Représentation des nombres

Représentation des nombres

29 septembre 2025

Représentation des nombres entiers

Représentation des nombres

Représentation des nombres entiers
Nombres positifs

Nombres positifs

Représentation des nombres

Représentation des nombres entiers

Nombres positifs

Principe

Représentation d'un nombre entier positif ou nul : binaire de base

Représentation des nombres

Représentation des nombres entiers
Nombres négatifs

Nombres négatifs

Représentation des nombres

Représentation des nombres entiers

Nombres négatifs

Problème

comment représenter le signe -

- avec uniquements des bits
- dans un nombre de bits fixé

Bit de signe

1 bit indique le signe, le reste = le nombre en valeur absolue exemples sur 8 bits :

- \triangleright 0 000 0101 = +5
- 10000101 = -5

inconvénients:

- **comment représenter zéro?** 1 000 0000 et 0 000 0000
- ightharpoonup l'addition marche plus : -5+3

$$1\ 000\ 0101 + 0\ 000\ 0011 = 1\ 000\ 1000 = -8$$

Complément à deux

- > change rien pour les nombres positifs
- on obtient les nombres négatifs en
 - inversant tous les bits de la valeur absolue (= complément à 1)
 - on ajoute 1 au résultat (sans s'occuper des dépassements)

Complément à deux : exemples

- pour coder -5 sur 8 bits
 - 0000 0101
 1111 1010
 - **3**. 1111 1011
- coder -3 sur 16 bits
 - 1. 0000 0000 0000 0011
 - 2. 1111 1111 1111 1100
 - 3. 1111 1111 1111 1101
 - vérification dans RISC simulator 1111 1111 1111 1101
- pour coder -0
- 1. 0000 0000
 - 2. 1111 1111
 - 2 0000 0000

Complement à deux : exos conversion

Écrire les nombres suivants en complément à deux sur 8 bits $\begin{array}{c|c} & -14 \\ & -55 \\ & -20 \end{array}$

Convertir les nombres suivants (écrits en complément à deux) en décimal

1101 1011

1011 0110

0001 0011

Complément à deux : exos opérations

Représentation des nombres décimaux

Représentation des nombres

Représentation des nombres décimaux
Représentation en virgule fixe

Représentation en virgule fixe

Principe

lorsque le nombre de chiffres en base 10 après la virgule est fixé, on peut simplement décaler tous les nombres d'un facteur donné

exemple opérations financières en 64 bits :

- on ne se préoccupe pas des millièmes de centimes
- on a rarement à traiter des opérations dépassant plusieurs milliers de milliards d'euros ($2^{64} = 18446744073709551615$)

=> on code les montants en centimes, ou en décicentimes, ou en centicentimes

Représentation en virgule fixe

Exercices

Sur 32 bits, en complément à deux, peut-on représenter en virgule fixe les montants d'une grosse société, sachant que

on veut une précision au millième de centimes

on veut pouvoir manipuler des

- on veut pouvoir manipuler des montants jusqu'à 10 milliards d'euros

Représentation des nombres

Représentation des nombres décimaux

Conversion décimal à virgule - binaire à virgule

Conversion décimal à virgule - binaire à virgule

Principe

Conversion en binaire à virgule :

- on fait des divisions successives pour la partie entière
- on fait des multiplications successives par 2 pour la partie à virgule

Exemple: conversion de 28,8625 en binaire

- Conversion de 28 : 11100_2 Conversion de 0,8625 :
 - $0.8625 \times 2 = 1.725 = 1 + 0.725$
 - $0.725 \times 2 = 1.45 = 1 + 0.45$
 - $0.45 \times 2 = 0.9 = 0 + 0.9$
 - $0.9 \times 2 = 1.8 = 1 + 0.8$
 - $0.8 \times 2 = 1.6 = 1 + 0.6$
 - $0.6 \times 2 = 1.2 = 1 + 0.2$
 - \triangleright 0, 2 × 2 = 0, 4 = 0 + 0, 4

 - $0.4 \times 2 = 0.8 = 0 + 0.8$
- ==>11100,11011100...

Conversion décimal à virgule - binaire à virgule

Exercices

Représenter en binaire à virgule les nombres suivants : $\begin{array}{c|c} \bullet & 0,1 \\ \bullet & 0,25 \\ \hline \bullet & 1/3 \end{array}$

Convertir, puis calculer en binaire : 0,1+0,2

Représentation des nombres

Représentation des nombres décimaux
Représentation en virgule flottante

Représentation en virgule flottante

Principe

pour les calculs scientifiques (la mole :) on peut avoir besoin de nombres très grands ou très petits => notation scientifique

pour représenter un nombre en notation scientifique dans un nombre fixé de bits, on utilise une représentation normalisée (IEEE 754)

en gros

- ▶ 1er bit = le signe
- e bits suivants = l'exposant
- le reste des bits = la mantisse

l'exposant peut être positif ou négatif; on pourrait le représenter en complément à deux, mais c pas facile pour les comparaisons => on décale de $2^{e-1}-1$ sa valeur

Flottant 32 bits (float32)

- ▶ 1 bit de signe (1 pour négatif)
- ▶ 8 bits pour l'exposant
- 23 bits pour la mantisse (la partie après la virgule)
- ==> on décale l'exposant de $2^{8-1}-1=127$
 - \triangleright exposant 3 = exposant 130
 - ightharpoonup exposant 0 = exposant 127
 - ightharpoonup exposant 10 = exposant 137

Valeur du nombre

$$v = s \times 2^{e-127_2} \times (m+1)$$

- ightharpoonup s = 1 ou -1 selon le bit de signe
- e est l'exposant

Exemple: -118,625 en float32

- le signe (1er bit) : nombre négatif, le premier bit est 1
- écriture du nombre (sans le signe) en binaire : 111 0110, 101
- décalage de la virgule vers la gauche, de façon à ne laisser qu'un 1 sur sa gauche : $1110110, 101_2 = 1, 110110101_2 \times 2^6$. C'est un nombre flottant normalisé : la mantisse est la partie à droite de la virgule, remplie de 0 vers la droite pour obtenir 23 bits. Cela donne $110\ 1101\ 0100\ 0000\ 0000\ 0000\ ($ on omet le 1 avant la virgule, qui est implicite).
- l'exposant est égal à 6, il faut le décaler et le convertir. Pour le format 32-bit IEEE 754, le décalage est 28-1-1=127. Donc 6+127=133 et $133_{10}=1000\ 0101_2$.

Résultat :

Représentation en virgule flottante

Exercices

Ecrire 452,778 en **float32**.

Aide : vérification et entraînement sur

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Conséquences

Les valeurs stockées en virgule flottante ne sont **pas exactes**, idem pour les calculs

- on ne teste pas l'égalité de deux flottants
- on fait attention aux erreurs qui s'accumulent dans les calculs