Instruction Formats (Rd can be Rsd where appropriate)

RISC Simulator V2 by Peter Higginson

Hex Binary Op Code ASSEMBLY LANGUAGE DESCRIPTION

00 00000 HLT halt

08 00001 MOD Rd, #immediate modulus

10 00010 ADD Rd, #fimmediate add

18 00011 SUB Rd, #fimmediate subtract

20 00100 CMP Rb, #fimmediate compare

28 00101 MOV Rd, #fimmediate move

30 00110 AND Rd, #fimmediate logical and

38 00111 ORR Rd, #fimmediate logical or

40 01000 XOR Rd, #fimmediate eXclusive OR (==EOR)
48 01001 UDV Rd, #immediate unsigned divide

50 01010 MUL Rd, #immediate multiply

58 0101 10 LSR Rd, Rs, #tcount logical shift right

5C 010111 LSL Rd, Rs, #count logical shift left

60 0110000 ADD Rd, Rs, Rb add

62 0110001 SUB Rd, Rs, Rb subtract

64 0110010 AND Rd, Rs, Rb logical and

66 0110011 ORRRd, Rs, Rb (BIS==0ORR) logical or (or bit set)
68 0110100 XORRd, Rs, Rb eXclusive OR (==EOR)
6A 0110101 LSR Rd, Rs, Rb logical shift right

6C 0110110 LSL Rd, Rs, Rb logical shift left

6E 01101110 ADD SP, #immediate add

6F 01101111 SUB SP, #immediate subtract

7x 0111 see sub-code list below

8 100 BRA/B<cond>/IMS, address branch etc.

A 1010 STR Rs, offset(Rn) store register

B 1011 LDR Rd, offset(Rn) load register

C 1100 ADD Rd, direct add*

D 1101 SUB Rd, direct subtract*

E 1110 STR Rs, direct store register (==STA==STO)*
F 1111 LDR Rd, direct load register (==LDA)*

Branch codes 100x xxx a aaaa aaaa —a is address, x is code (2" line) — full code in hex 3™ line
BRA BEQ BNE BCS/BHS BCC/BLO BMI BPL BVS BRP BHI BRZ BGE BLT BGT BLE JMS
7 8 910 11 12 13 14 15

0 1 2 3 4
80 82 84 86 88

Branch Meanings
BRA BRanch Always

BEQ Branch if EQual

8A 8C 8E 90 92 94 96 98 9A 9C O9E

BNE Branch if Not Equal
BRP Branch if RO is Positive (or zero)

BCS Branch if Carry Set
BVS Branch if oVerflow Set
BHI Branch if Higher than
BRZ Branch if RO is Zero
BLT Branch if Less Than

BCC Branch if Carry Clear
BPL Branch if positive (PLus)
BHS Branch if Higher or Same BLO Branch if LOwer than

BGT Branch if Greater Than BGE Branch if Greater than or Equal
BLE Branch if Less than or Equal JMS JuMp to Subroutine

BMI Branch if MInus

Sub-codes of instruction code 7 (0111)

700 011100000 ASR Rd, #count arithmetic shift right

708 0111 0000 1 ROR Rd, #count rotate right

710 011100010 INP Rd, address (default 2) input*

718 011100011 OUT Rs, address (default 4) output* (OTC==0UT RO,7)
720 0111 0010 000 MOV Rd, flags/SP/LR/PC move

722 0111 0010 001 MOV flags/SP/LR/PC, Rs move

7240 0111 001001000 POP Rd pop from stack

RISC Simulator V2 by Peter Higginson

7248 0111 001001001 PSH Rs push to stack

7250 0111001001010 BRA Rs branch (to address in register)

7258 0111 001001011 JMS Rs subroutine call

7260 0111 001001100000 RET subroutine return

7261 to 727 0111 001001100001 to 0111 001001112 spare

728 0111001010 MVN Rd, Rs move NOT

72Cto 73 01110010 11to 0111 0011 spare

74x 0111 0100 xx UDV/MOD/MLX/ASR Rd, Rs unsigned divide/modulus
extended multiply/arithmetic shift right

75x% 0111 0101 xx ROR/DIV/BIC/NEG Rd, Rs rotate right/signed divide

logical bit clear/negate

760/764 0111 0110 Ox INP/OUT Rsd, Ra input/output

768/76C 0111 0110 1x CMP/TST Rb, Rs compare/test (logical and)

77% 0111 0111 xx MOV/ADC/SBC/MUL Rd, Rs move/add with carry included
subtract with carry included/multiply

78 0111100 STR Rs, offset(SP) store register

7A 0111 101 LDR Rd, offset(SP) load register

7C 0111 110 PSH {RO-R7,LR} push to stack (bit mask)

7E 0111111 POP {PC,R7-R0} pop from stack (bit mask)

Also DAT is an assembler directive to store data and NOP generates MOV RO, RO (as used by ARM).

Notes
1)

2)

3)
4)

5)

6)

7)

8)

9)

* indictes that the Rd or Rs can be omitted and RO will be assumed.

The assembler accepts two registers for three register instructions (e.g. ADD Rd,Rs generates ADD
Rd,Rd,Rs). Similarly, for example, LSR Rd,#7 generates LSR Rd,Rd,#7. The assembler also accepts (Rn)
or [Rn] as equivalent to O(Rn) and (SP) or [SP] as O(SP).

JMS overwrites the old LR. Standard linkage is to push several registers including LR on entry and
pop the registers and PC on exit (so entry LR becomes return PC). So compilers use POP multiple
instead of using RET. (Compilers expect the first four parameters go into RO to R3.)

In the inst7 sub-set there are a few spares, the most has 8 parameter bits.

While ADD, SUB and MUL are the same for signed and unsigned, DIV is not and so an extra
instruction (UDV) is provided for unsigned division. Extended multiply (MLX) is unsigned and clears
all flags apart from the Z flag.

| used 3 character instructions for convenience. So HALT is HLT and PUSH is PSH.

Only ALU operations set the flags. In the ARM implementation of 32 bit instructions an explicit “set
flags” bit is required. We are nearer the 16 bit ARM implementation where only some instructions
set the flags. LDR and STR do not set the flags (to avoid issues with out of order execution) and MOV
does not because the values go nowhere near the ALU. (MVN does set flags.)

The instructions ADD/SUB SP,#imm do not change the flags. Execution will error if the SP goes out of
the memory range using these instructions. MOV SP,Rx however wraps to stay in memory range as
do LDR/STR n(SP) and LDR/STR n(Ra). PSH and POP do not wrap — execution will error (and Reset is
then needed).

The multi-register PSH and POP instructions take both lists {Ra,Rb,Rc} and/or ranges of registers as
parameters but obviously always push and pop in a fixed order. If the PSH was replaced by individual
instructions the lowest register would be pushed first (and so end up in the highest address).

Output to device 4 is treated as signed but you can output unsigned (device 5), hex (device 6) or
character (device 7). Input is a number from device 2. (Note RO and the 4 and 2 can be defaulted.)

Instructions in alphabetical order

ADC
BLO
INP

OTC

ADD AND ASR BCC BCS BEQ BGE BGT BHI BHS BIC BIS BLE
BLT BMI BNE BPL BRA BRP BRZ BVS CMP DAT DIV EOR HLT
IMS LDA LDR LSL LSR MLX ™MOD MOV MUL MVN NEG NOP ORR
OUT POP PSH RET ROR SBC STA STR SUB TST UDV XOR

PLH 17/8/2023

