
Algorithmes sur les arbres binaires
et les arbres binaires de recherche

BARBIER J.M. ‑ LGT Dumezil ‑ NSI

05 janvier 2026

Algorithmes sur les arbres binaires et les arbres binaires de recherche 05 janvier 2026

Table desmatières

1 Programme 2
1.1 Partie structures de données . 2
1.2 Partie algorithmique . 2

2 Arbres binaires 2
2.1 Définition et propriétés . 2

2.1.1 Définitions . 2
2.1.2 Hauteur d’un arbre . 3

2.2 Réprésentation en python . 4
2.2.1 Noeud d’un arbre binaire . 4

2.3 Algorithmique des arbres binaires . 5
2.3.1 Opérations récursives . 5
2.3.2 Calcul de la taille . 6
2.3.3 Calcul de la hauteur . 6
2.3.4 Parcours préfixe, infixe, postfixe . 6
2.3.5 Parcours en largeur . 7

2.4 Exercices . 8
2.4.1 Exercice 1 . 8
2.4.2 Exercice 2 . 8
2.4.3 Exercice 3 . 8
2.4.4 Exercice 4 . 8
2.4.5 Exercice 5 . 8
2.4.6 Exercice 6 . 9

3 Arbres binaires de recherche 9
3.1 Notion d’arbre binaire de recherche . 9

3.1.1 Exemple : organisation d’une bibliothèque . 9
3.1.2 Notion d’arbre binaire de recherche . 9
3.1.3 Représentation en python . 9
3.1.4 Exercice 1 . 10
3.1.5 Exercice 2 . 10

3.2 Recherche d’un élément . 10
3.2.1 Principe . 10
3.2.2 Programme . 10
3.2.3 Exercice 1 . 10
3.2.4 Efficacité . 11
3.2.5 Exercice 2 . 11

3.3 Ajout d’un élément . 11
3.3.1 Principe . 11
3.3.2 Solution 1 ‑ modification en place . 11
3.3.3 Exemple avec solution 1 . 12
3.3.4 Solution 2 ‑ noeuds immuables . 12
3.3.5 Exemple avec solution 2 . 12
3.3.6 Comparaison . 12
3.3.7 Solution 1bis . 12
3.3.8 Eléments déjà présents . 13
3.3.9 Efficacité / arbre équilibré . 13
3.3.10 Construction d’un arbre équilibré . 13
3.3.11 Exercice 1 . 13

BARBIER J.M. ‑ LGT Dumezil ‑ NSI 1

Algorithmes sur les arbres binaires et les arbres binaires de recherche 05 janvier 2026

3.3.12 Exercice 2 . 13

1 Programme

1.1 Partie structures de données

Contenus

— Arbres : structures hiérarchiques.
— Arbres binaires : nœuds, racines, feuilles, sous‑arbres gauches, sous‑arbres droits.

Capacités attendues

— Identifier des situations nécessitant une structure de données arborescente.
— Évaluer quelques mesures des arbres binaires (taille, encadrement de la hauteur, etc.).

Commentaires

— On fait le lien avec la rubrique « algorithmique ».

1.2 Partie algorithmique

Contenus

— Algorithmes sur les arbres binaires et sur les arbres binaires de recherche.

Capacités attendues

— Calculer la taille et la hauteur d’un arbre.
— Parcourir un arbre de différentes façons (ordres infixe, préfixe ou suffixe; ordre en largeur d’abord).
— Rechercher une clé dans un arbre de recherche, insérer une clé.

Commentaires

— Une structure de données récursive adaptée est utilisée.
— L’exemple des arbres permet d’illustrer la programmation par classe.
— La recherche dans un arbre de recherche équilibré est de coût logarithmique.

2 Arbres binaires

2.1 Définition et propriétés

2.1.1 Définitions

Les arbres binaires sont une famille particulière des arbres.

Un arbre binaire non vide est constitué d’un ensemble fini de noeuds correspondant à l’un des deux cas suivants :

— Soit l’arbre est vide (il ne contient aucun noeud)
— Soit l’arbre n’est pas vide, et ses noeuds sont structurés de la manière suivante :

— un noeud est appelé la racine de l’arbre
— les noeuds restants sont séparés en deux sous‑ensembles, qui forment récursivement deux sous‑arbres ap‑

pelés respectivement sous arbre gauche et sous arbre droit
— la racine est reliée à la racine de chacun de ses sous‑arbres gauche et droit (lorsqu’ils ne sont pas vides)

BARBIER J.M. ‑ LGT Dumezil ‑ NSI 2

Algorithmes sur les arbres binaires et les arbres binaires de recherche 05 janvier 2026

Dans un arbre binaire, chaque noeud est donc toujours relié à deux sous‑arbres, éventuellement vides.

Lorsqu’un noeud est relié à deux sous‑arbres vides, on dit que c’est une feuille, ou un noeud terminal.

La taille d’un arbre (binaire ou non) est son nombre de noeuds.

Exercice :

— dessiner tous les arbres binaires possédant 4 noeuds.
— déterminer la hauteur minimale et maximale des arbres binaires à 4 noeuds

2.1.2 Hauteur d’un arbre

La hauteur d’un arbre (binaire ou non) est le plus grand nombre de noeuds rencontrés en descendant de la racine
jusqu’à une feuille (en comptant la feuille et la racine).

— La hauteur d’un arbre vide est nulle
— La hauteur d’un arbre non vide est la hauteur dumaximum des hauteurs de ses deux sous‑arbres, plus 1.

Cette définition est plus adaptée que celle comptant le nombre de liens car elle permet de donner une hauteur à un
arbre vide.

Si𝑁 désigne la taille d’un arbre binaire, et si ℎ désigne sa hauteur, alors

ℎ ≤ 𝑁 ≤ 2ℎ − 1

Pour la première partie, on a ℎ = 𝑁 pour un arbre “linéaire” : cf figure 1. Les deux extrèmes (que des sous arbres
gauches ou droits) sont appelés des peignes.

FiGURE 1 – h=N ‑ arbre linéaire

La deuxième parte, 𝑁 = 2ℎ − 1, est atteinte dans un arbre où toutes feuilles sont exactement à la même hauteur. On
appelle ce type d’arbre un arbre parfait (voir figure 2).

BARBIER J.M. ‑ LGT Dumezil ‑ NSI 3

Algorithmes sur les arbres binaires et les arbres binaires de recherche 05 janvier 2026

FiGURE 2 – 𝑁 = 2ℎ − 1 ‑ arbre parfait

2.2 Réprésentation en python

2.2.1 Noeud d’un arbre binaire

Un noeud est caractérisé par :

— une valeur
— sa liaison avec la racine de son sous‑arbre droit
— sa liaison avec la racine de son sous‑arbre gauche

On peut (par exemple) donc le représenter par une classe :

class Node:
def __init__(self, left, value, right):

self.value = value
self.left = left
self.right = right

Si le sous‑arbre droit ou gauche est nul, alors l’attribut left ou right prend la valeur None.

On pourrait aussi rajouter un attribut parent si nécessaire (mais peu utile et compliqué dans les faits).

Exemple :

FiGURE 3 – Exemple

l’arbre de la figure 2.4.4 est défini par

a = Node(Node(Node(None,"C",None),
"B",
Node(None,"D",None)),

"A",
None)

On peut aussi l'écrire sous une forme plus "arbre"
a = Node(

BARBIER J.M. ‑ LGT Dumezil ‑ NSI 4

Algorithmes sur les arbres binaires et les arbres binaires de recherche 05 janvier 2026

Node(
Node(

None,
"C",
None),

"B",
Node(

None,
"D",
None)),

"A",
None)

En utilisant pythontutor, on peut visualiser la structure correspondante (figure 4)

FiGURE 4 – Structure via pythontutor

Exercice (python) :

— créer en python les 3 arbres de la figure 5 en utilisant la classe Node
— vérifier en les visualisant sur pythontutor

FiGURE 5 – Exercice : représenter en python les 3 arbres ci‑dessus

2.3 Algorithmique des arbres binaires

2.3.1 Opérations récursives

La définition d’un arbre binaire est intrinsèquement récurive (chaque noeud possède deux sous‑arbres) ; la récursivité
est donc assez “naturelle” pour effectuer des opérations sur les arbres.

def operation(arbre, paramètres):

BARBIER J.M. ‑ LGT Dumezil ‑ NSI 5

Algorithmes sur les arbres binaires et les arbres binaires de recherche 05 janvier 2026

si arbre est vide:
quitter, éventuellement en renvoyant une valeur

faire l'opération sur le sous-arbre gauche
en transmettant éventuellement des paramètres
en récupérant éventuellement la valeur de retour de l'opération

faire l'opération sur le sous-arbre droit
en transmettant éventuellement des paramètres
en récupérant éventuellement la valeur de retour de l'opération

quitter, éventuellement en utiliser les résultats
des sous-arbres et/ou la valeur du noeur pour renvoyer une valeur

2.3.2 Calcul de la taille

def taille(arbre: Node) -> int:
"""Renvoie le nombre de noeuds de l'arbre"""
if arbre is None:

return 0
return 1 + taille(arbre.left) + taille(arbre.right)

Nous avons une fonction doublement récursive. Si la taille de l’arbre est N, alors avec cet algorithme récursif chaque
noeud est parcouru une seule fois, et on effectue donc un nombre d’opérations de l’ordre de 2 × 𝑁 , puisque chaque
noeud donne lieu à deux additions.

Exercice (python) : exécuter cette fonction sur les 3 arbres de la figure 5 en la visualisant sur pythontutor

2.3.3 Calcul de la hauteur

def hauteur(arbre: Node) -> int:
"""Renvoie la hauteur de l'arbre"""
if arbre is None:

return 0
return 1 + max(hauteur(arbre.left), hauteur(arbre.right))

Cet algorithme est très similaire à celui du calcul de la hauteur (de l’ordre de 2𝑁 opérations)

Exercice (python) : comme ci‑dessus, exécuter cette fonction sur les 3 arbres de la figure 5 en la visualisant sur python‑
tutor

2.3.4 Parcours préfixe, infixe, postfixe

Les fonctionstaille ethauteur, et demanière générale les fonctions qui vont récursivement parcourir tout l’arbre,
peuvent effectuer des opérations avant / après / entre le parcours des sous‑arbres gauches et droits. On appelle cela
respectivement : parcours prefixe, parcours postfixe, et parcours infixe.

def parcours(arbre: Node):
if arbre is None:

return
si parcours prefixe :
print(a.valeur, end="")
parcours(arbre.left)
si parcours infixe
print(a.valeur, end="")
parcours(arbre.right)
si parcours postfixe
print(a.valeur, end="")

BARBIER J.M. ‑ LGT Dumezil ‑ NSI 6

Algorithmes sur les arbres binaires et les arbres binaires de recherche 05 janvier 2026

Le type de parcours dépend du type d’opération que l’on souhaite faire

— parcours postfixe si on fait “remonter” une information des feuilles vers la racine
— parcours prefixe si on fait “descendre” une information de la racine vers les feuilles

Exercice : effectuer le parcours des 3 arbres de la figure 5 en mode préfixe, infixe et postfixe et constater la différence
d’affichage.

2.3.5 Parcours en largeur

Les parcours précédents effectuaient un parcours en profondeur de l’arbre. Si on veut faire un parcours en largeur
(visiter tous les noeuds à une hauteur donnée avant de passer à la hauteur suivante), il faut un algorithme différent,
utilisant une file (FIFO).

FiGURE 6 – Parcours en largeur

Algorithme de parcours en largeur (non récursif)

1. mettre le noeud racine dans la file
2. retirer le noeud du début de la file pour le traiter
3. mettre tous ses enfants dans la file
4. si la file n’est pas vide, reprendre à l’étape 2

Implémentation : on va utiliser la classe File basique implémentée dans le chapitre précédent.

class File:
def __init__(self):

self.file = list()
def enfile(self, valeur):

self.file.append(valeur)
def defile(self):

assert len(self.file) > 0, "La file est vide"
return self.file.pop(0)

def nbelts(self):
return len(self.file)

Implémentation en utilisant l’algorithme proposé :

def parcours_largeur(a):
f = File()
f.enfile(a)
while f.nbelts() != 0:

s = f.defile()
print(s.value)
if s.left is not None:

f.enfile(s.left)
if s.right is not None:

f.enfile(s.right)

Exercice : vérifier le fonctionnement de cette fonction parcours_largeur dans pytutor en utilisant les 3 arbres de
la figure 5

BARBIER J.M. ‑ LGT Dumezil ‑ NSI 7

Algorithmes sur les arbres binaires et les arbres binaires de recherche 05 janvier 2026

2.4 Exercices

2.4.1 Exercice 1

Ecrire une fonction affiche(arbre) qui imprime un arbre sous la forme suivante

— si l’arbre est vide, on n’imprime rien
— pour un noeud, on imprime successivement

— une parenthèse ouvrante
— son sous‑arbre gauche (récursivement)
— sa valeur
— son sous‑arbre droit (récursivement)
— une parenthèse fermante

Par exemple, l’arbre de la figure doit afficher (((C)B(D))A)

2.4.2 Exercice 2

Dessiner l’arbre binaire pour lequel le programme précédent produit la sortie (A((B)C)). De manière générale, ex‑
pliquer comment retrouver la forme de l’arbre dont l’affichage est donné.

2.4.3 Exercice 3

Donner 4 arbres de taille 3, tous différents, pour lesquels le parcours infixe affiche 123.

2.4.4 Exercice 4

Ecrire une fonction indente qui affiche un arbre de manière indentée, en affichant un tiret pour les sous‑arbres
vides.

Exemple de sortie du programme pour l’arbre de la figure (chaque point · représente un espace)

A
·B
··C
···-
···-
··D
···-
···-
·-

2.4.5 Exercice 5

— Ecrire une fonction parfait(h:int) qui prend en argument un nombre entier h supérieur ou égal à zéro et
qui renvoie un arbre binaire parfait de hauteur h

— Ecrire une fonction peigne_gauche(h:int) qui prend en argument un nombre entier h supérieur ou égal
à zéro et qui renvoie un peigne gauche (tous les sous‑arbres droits sont vides) de hauteur h

— Ecrire une fonction est_peigne_gauche(arbre) qui renvoie True si arbre est un peigne gauche.

BARBIER J.M. ‑ LGT Dumezil ‑ NSI 8

Algorithmes sur les arbres binaires et les arbres binaires de recherche 05 janvier 2026

2.4.6 Exercice 6

Déterminer quel type de parcours est effecturé si dans la fonctionparcours_largeur on remplace la file (FIFO) par
une pile (LIFO).

Quel avantage peut‑il y avoir par rapport aux méthodes de parcours récursifs?

3 Arbres binaires de recherche

3.1 Notion d’arbre binaire de recherche

3.1.1 Exemple : organisation d’une bibliothèque

— code à 3 lettres : NRS / GHD…
— 17576 codes, plein de livres avec le même code
— 1 salle par code, deux sorties par salles

Comment organiser les salles pour trouver rapidement les livres?

FiGURE 7 – Organisation des salles

3.1.2 Notion d’arbre binaire de recherche

Un arbre binaire de recherche (ou ABR) est un arbre binaire dont les noeuds contiennent des valeurs qui peuvent être
comparées entre elles, et tel que, pour tout noeud de l’arbre :

— toutes les valeurs situées dans le sous‑arbre gauche sont plus petites que la valeur située dans le noeud.
— toutes les valeurs situées dans le sous‑arbre droit sont plus grandes que la valeur située dans le noeud.

FiGURE 8 – ABR / non ABR

Les deux premiers arbres sont des ABR, celui de droite ne l’est pas. Pourquoi?

3.1.3 Représentation en python

On utilise juste la représentation Node précédente. Les deux contraintes (valeurs pouvant être compares, et ordre
dans l’arbre) sont appliquées dans l’implémentation.

BARBIER J.M. ‑ LGT Dumezil ‑ NSI 9

Algorithmes sur les arbres binaires et les arbres binaires de recherche 05 janvier 2026

Les fonctions taille, hauteur restent valables pour les ABR.

Le parcours_infixe de l’arbre affiche les éléments dans l’ordre alphabétique.

3.1.4 Exercice 1

Créer 3 arbres binaires de recherche A, B et C contenant les mots :

— arbre
— pain
— zoo
— marin
— chaleur
— souris

3.1.5 Exercice 2

Donner tous les ABR constitués de 3 noeuds et contenant les entiers 1, 2 et 3.

3.2 Recherche d’un élément

3.2.1 Principe

On va se diriger dans l’arbre en comparant la valeur à rechercher à la valeur du noeud courant.

— si le noeud courant est vide (cas de base), on a rien trouvé => renvoie False
— si la valeur à rechercher est strictement plus petite que la valeur du noeud, on va rechercher dans le sous‑arbre

gauche
— si la valeur à rechercher est strictement plus grandeque la valeur dunoeud, on va rechercher dans le sous‑arbre

droit
— sinon c’est que la valeur à rechercher est égale à la valeur du noeud, on a trouvé et en revoie True.

3.2.2 Programme

def recherche(x, arbre):
"""renvoie True si x est dans l'ABR arbre"""
if arbre is None:

return False
if x < arbre.value:

return recherche(x, arbre.left)
if x > arbre.value:

return recherche(x, arbre.right)
return True

3.2.3 Exercice 1

Exécuter sous pythontutor la fonction recherche sur les arbres A, B et C de l’exercice précédent, en cherchant soit
un mot existant, soit un mot inexistant, et observer le déroulement de la recherche.

BARBIER J.M. ‑ LGT Dumezil ‑ NSI 10

Algorithmes sur les arbres binaires et les arbres binaires de recherche 05 janvier 2026

3.2.4 Efficacité

On a vu que pour un arbre de taille N, on avant ℎ ≤ 𝑁 ≤ 2ℎ − 1 avec les deux cas extrèmes des arbres linéaires (dont
les peignes) et les arbrs parfaits.

Si l’arbre n’est pas équilibré (au pire, arbre linéaire) on peut avoir une recherche qui parcourt jusqu’à N éléments

Si l’arbre est équilibré (aumieux, arbre parfait), on a une recherche qui parcourra la hauteur de l’arbre équilibré. On a
dans ce cas 𝑁 = 2ℎ − 1 soit environ 𝑁 = 2ℎ et donc ℎ = log2(𝑁) = ln 𝑁

ln 2

Concrètement, avec une liste de mots de 336000 mots, on aura une recherche en log2(336000) = 13 étapes.

De manière générale, le coût d’une recherche dans un ABR est au pire sa hauteur, et donc dépend grandement de la
manière dont il a été construit.

3.2.5 Exercice 2

Dans un ABR, où se trouve le plus petit élémént? En déduire une fontion minimum(arbre) qui renvoie le plus petit
élémént de l’ABR (si l’arbre est vide, cette fonction renvoie None).

3.3 Ajout d’un élément

3.3.1 Principe

Dans le principe, ajouter un élément n’est pas plus compliqué que de le rechercher :

— si il est plus petit on va à gauche
— si il est plus grand, on va à droite
— quand on arrive à un arbre vide, on ajoute un noeud

3.3.2 Solution 1 ‑ modification en place

def ajoute(arbre, elt):
if elt < arbre.value:

if arbre.left is None:
arbre.left = Node(None, elt, None)
return

ajoute(arbre.left, elt)
if elt > arbre.value:

if arbre.right is None:
arbre.right = Node(None, elt, None)
return

ajoute(arbre.right, elt)

Problème : si l’arbre est vide, notre fonction ajoute ne fonctionne pas.

BARBIER J.M. ‑ LGT Dumezil ‑ NSI 11

Algorithmes sur les arbres binaires et les arbres binaires de recherche 05 janvier 2026

3.3.3 Exemple avec solution 1

import random

with open("corpus2.txt", "r") as l:
lines = [m[:-1] for m in l.readlines()]

random.shuffle(lines)

arbre = None
start = time.clock()
for mot in lines:

if arbre is None:
arbre = Node(None, mot, None)

else:
ajoute(arbre, mot)

print(f"Durée : {time.clock()-start:2.2f}")

Durée : 4.82s

3.3.4 Solution 2 ‑ noeuds immuables

On peut résoudre ce problème en nemodifiant pas l’arbre en place, mais en renvoyant de nouveaux noeuds à chaque
fois.

def ajoute(a, elt):
""" ajoute elt à l'arbre a, renvoie un nouvel arbre """
if a is None:

return Node(None, elt, None)
if elt < a.value:

return Node(ajoute(a.left, elt), a.value, a.right)
if elt > a.value:

return Node(a.left, a.value, ajoute(a.right, elt))
return Node(a.left, a.value, a.right)

3.3.5 Exemple avec solution 2

import random
import time
with open("corpus2.txt", "r") as l:

lines = [m[:-1] for m in l.readlines()]
random.shuffle(lines)
arbre = None
start = time.clock()
for mot in lines:

arbre = ajoute2(arbre, mot)
print(f"Durée : {time.clock()-start:2.2f}")

Durée : 12.51s

3.3.6 Comparaison

La solution 1 estmoins élégante,mais plus rapide que la 2 (13 secondes contre 5 secondes environ pour 336000mots).
En effet, il faut rajouter le temps d’allocation enmémoire de la création d’un nouveau noeud.

3.3.7 Solution 1bis

On peut renvoyer à chaque fois l’arbre, demanière “mixer” la création de nouveau noeud pour l’arbre vide et la modi‑
fication en place pour un arbre existant.

BARBIER J.M. ‑ LGT Dumezil ‑ NSI 12

Algorithmes sur les arbres binaires et les arbres binaires de recherche 05 janvier 2026

def ajoute(arbre, elt):
if arbre is None:

return Node(None, elt, None)
if elt < arbre.value:

if arbre.left is None:
arbre.left = Node(None, elt, None)

else:
ajoute(arbre.left, elt)

if elt > arbre.value:
if arbre.right is None:

arbre.right = Node(None, elt, None)
else:

ajoute(arbre.right, elt)
return arbre

3.3.8 Eléments déjà présents

Dans les implémentations précédentes, si un élément est déjà présent, il n’est pas rajouté une deuxième fois à l’ABR.
Notre ABR créedoncun ensemble (par définition, un ensemble comporte un exemplaire uniquede chaque élément).

On peut avoir besoin d’un multiensemble. Dans ce cas on peut modifier la fonction ajout pour que chaque élément
soit systématiquement ajouté.

3.3.9 Efficacité / arbre équilibré

L’ajout tel que nous l’avons implémenté est comparable à la recherche.

Selon la manière dont est construit un ABR, sa hauteur (et donc le nombre d’opérations à faire pour une recherche ou
un ajout) peut varier (ℎ ≤ 𝑁 ≤ 2ℎ − 1 soit 𝑙𝑛(𝑁) ≤ ℎ ≤ 𝑁)

Pour N = 336000, on a donc 13 ≤ ℎ ≤ 336000 !

Si la hauteur est trop grande, on ne pourra même pas rechercher, le python déclenchant une exception Recursio-
nError.

L’idéal est de s’approcher au mieux d’un arbre parfait. On dit alors que l’arbre est équilibré.

3.3.10 Construction d’un arbre équilibré

En gros, le principe (pas au programme) est de réorganiser pendant la construction la structure de l’ABR pour éviter
que la hauteur ne devienne trop grande.

On peutmontrer que si les éléments à ajouter sont “mélangés”, on s’approche pas tropmal d’un arbre équilibré (c’est
ce que nous avons fait avec le random.shuffle)

3.3.11 Exercice 1

En vous inspirant des fonctions ajoute précédentes, créer une fonction majoute qui crée unmultiensemble si des
doublons sont présents.

3.3.12 Exercice 2

Créer une fonction remplir(arbre, t) qui ajoute tous les éléments de l’arbre arbre dans la liste liste, dans
l’ordre infixe.

BARBIER J.M. ‑ LGT Dumezil ‑ NSI 13

Algorithmes sur les arbres binaires et les arbres binaires de recherche 05 janvier 2026

Utiliser cette fonction pour créer une fonction trier(liste) qui reçoit en argument une liste d’entiers mélangés
et renvoie une liste triée contenant les mêmes éléments.

Remarque : selon la fonction d’ajout choisie, la liste renvoyée sera non seulement triée, mais aussi dédupliquée.

Discuter de l’efficacité de cette maniere de trier.

BARBIER J.M. ‑ LGT Dumezil ‑ NSI 14

	Programme
	Partie structures de données
	Partie algorithmique

	Arbres binaires
	Définition et propriétés
	Définitions
	Hauteur d’un arbre

	Réprésentation en python
	Noeud d’un arbre binaire

	Algorithmique des arbres binaires
	Opérations récursives
	Calcul de la taille
	Calcul de la hauteur
	Parcours préfixe, infixe, postfixe
	Parcours en largeur

	Exercices
	Exercice 1
	Exercice 2
	Exercice 3
	Exercice 4
	Exercice 5
	Exercice 6

	Arbres binaires de recherche
	Notion d’arbre binaire de recherche
	Exemple : organisation d’une bibliothèque
	Notion d’arbre binaire de recherche
	Représentation en python
	Exercice 1
	Exercice 2

	Recherche d’un élément
	Principe
	Programme
	Exercice 1
	Efficacité
	Exercice 2

	Ajout d’un élément
	Principe
	Solution 1 - modification en place
	Exemple avec solution 1
	Solution 2 - noeuds immuables
	Exemple avec solution 2
	Comparaison
	Solution 1bis
	Eléments déjà présents
	Efficacité / arbre équilibré
	Construction d’un arbre équilibré
	Exercice 1
	Exercice 2

