
Algorithmes sur les arbres binaires et les arbres binaires de recherche

Algorithmes sur les arbres binaires et les arbres binaires de
recherche

05 janvier 2026



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Programme

Programme



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Programme

Partie structures de données

Partie structures de données



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Programme

Partie structures de données

Partie structures de données

Contenus

▶ Arbres : structures hiérarchiques.
▶ Arbres binaires : nœuds, racines, feuilles, sous-arbres gauches, sous-arbres droits.

Capacités attendues

▶ Identifier des situations nécessitant une structure de données arborescente.
▶ Évaluer quelques mesures des arbres binaires (taille, encadrement de la hauteur, etc.).

Commentaires

▶ On fait le lien avec la rubrique « algorithmique ».



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Programme

Partie algorithmique

Partie algorithmique



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Programme

Partie algorithmique

Partie algorithmique
Contenus

▶ Algorithmes sur les arbres binaires et sur les arbres binaires de recherche.

Capacités attendues

▶ Calculer la taille et la hauteur d’un arbre.
▶ Parcourir un arbre de différentes façons (ordres infixe, préfixe ou suffixe ; ordre en largeur

d’abord).
▶ Rechercher une clé dans un arbre de recherche, insérer une clé.

Commentaires

▶ Une structure de données récursive adaptée est utilisée.
▶ L’exemple des arbres permet d’illustrer la programmation par classe.
▶ La recherche dans un arbre de recherche équilibré est de coût logarithmique.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Arbres binaires



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Définition et propriétés

Définition et propriétés



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Définition et propriétés

Définitions I

Les arbres binaires sont une famille particulière des arbres.

Un arbre binaire non vide est constitué d’un ensemble fini de noeuds correspondant à l’un des
deux cas suivants :

▶ Soit l’arbre est vide (il ne contient aucun noeud)
▶ Soit l’arbre n’est pas vide, et ses noeuds sont structurés de la manière suivante :

▶ un noeud est appelé la racine de l’arbre
▶ les noeuds restants sont séparés en deux sous-ensembles, qui forment récursivement deux

sous-arbres appelés respectivement sous arbre gauche et sous arbre droit
▶ la racine est reliée à la racine de chacun de ses sous-arbres gauche et droit (lorsqu’ils ne sont

pas vides)



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Définition et propriétés

Définitions II

Dans un arbre binaire, chaque noeud est donc toujours relié à deux sous-arbres, éventuellement
vides.

Lorsqu’un noeud est relié à deux sous-arbres vides, on dit que c’est une feuille, ou un noeud
terminal.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Définition et propriétés

Définitions III

La taille d’un arbre (binaire ou non) est son nombre de noeuds.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Définition et propriétés

Définitions IV

Exercice :

▶ dessiner tous les arbres binaires possédant 4 noeuds.
▶ déterminer la hauteur minimale et maximale des arbres binaires à 4 noeuds



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Définition et propriétés

Hauteur d’un arbre I

La hauteur d’un arbre (binaire ou non) est le plus grand nombre de noeuds rencontrés en
descendant de la racine jusqu’à une feuille (en comptant la feuille et la racine).

▶ La hauteur d’un arbre vide est nulle
▶ La hauteur d’un arbre non vide est la hauteur du maximum des hauteurs de ses deux

sous-arbres, plus 1.

Cette définition est plus adaptée que celle comptant le nombre de liens car elle permet de
donner une hauteur à un arbre vide.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Définition et propriétés

Hauteur d’un arbre II

Si 𝑁 désigne la taille d’un arbre binaire, et si ℎ désigne sa hauteur, alors

ℎ ≤ 𝑁 ≤ 2ℎ − 1



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Définition et propriétés

Hauteur d’un arbre III
Pour la première partie, on a ℎ = 𝑁 pour un arbre “linéaire” : cf figure ??. Les deux extrèmes
(que des sous arbres gauches ou droits) sont appelés des peignes.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Définition et propriétés

Hauteur d’un arbre IV
La deuxième parte, 𝑁 = 2ℎ − 1, est atteinte dans un arbre où toutes feuilles sont exactement à
la même hauteur. On appelle ce type d’arbre un arbre parfait (voir figure ??).



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Réprésentation en python

Réprésentation en python



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Réprésentation en python

Noeud d’un arbre binaire I

Un noeud est caractérisé par :

▶ une valeur
▶ sa liaison avec la racine de son sous-arbre droit
▶ sa liaison avec la racine de son sous-arbre gauche

On peut (par exemple) donc le représenter par une classe :

class Node:
def __init__(self, left, value, right):

self.value = value
self.left = left
self.right = right



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Réprésentation en python

Noeud d’un arbre binaire II
Si le sous-arbre droit ou gauche est nul, alors l’attribut left ou right prend la valeur None.

On pourrait aussi rajouter un attribut parent si nécessaire (mais peu utile et compliqué dans
les faits).

Exemple :

l’arbre de la figure 42 est défini par



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Réprésentation en python

Noeud d’un arbre binaire III

a = Node(Node(Node(None,"C",None),
"B",
Node(None,"D",None)),

"A",
None)



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Réprésentation en python

Noeud d’un arbre binaire IV
# On peut aussi l'écrire sous une forme plus "arbre"
a = Node(

Node(
Node(

None,
"C",
None),

"B",
Node(

None,
"D",
None)),

"A",
None)



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Réprésentation en python

Noeud d’un arbre binaire V

En utilisant pythontutor, on peut visualiser la structure correspondante (figure ??)



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Réprésentation en python

Noeud d’un arbre binaire VI



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Réprésentation en python

Noeud d’un arbre binaire VII
Exercice (python) :

▶ créer en python les 3 arbres de la figure ?? en utilisant la classe Node
▶ vérifier en les visualisant sur pythontutor



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Algorithmique des arbres binaires



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Opérations récursives I

La définition d’un arbre binaire est intrinsèquement récurive (chaque noeud possède deux
sous-arbres) ; la récursivité est donc assez “naturelle” pour effectuer des opérations sur les
arbres.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Opérations récursives II
def operation(arbre, paramètres):

si arbre est vide:
quitter, éventuellement en renvoyant une valeur

faire l'opération sur le sous-arbre gauche
en transmettant éventuellement des paramètres
en récupérant éventuellement la valeur de retour de l'opération

faire l'opération sur le sous-arbre droit
en transmettant éventuellement des paramètres
en récupérant éventuellement la valeur de retour de l'opération

quitter, éventuellement en utiliser les résultats
des sous-arbres et/ou la valeur du noeur pour renvoyer une valeur



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Calcul de la taille

def taille(arbre: Node) -> int:
"""Renvoie le nombre de noeuds de l'arbre"""
if arbre is None:

return 0
return 1 + taille(arbre.left) + taille(arbre.right)

Nous avons une fonction doublement récursive. Si la taille de l’arbre est N, alors avec cet
algorithme récursif chaque noeud est parcouru une seule fois, et on effectue donc un nombre
d’opérations de l’ordre de 2 × 𝑁 , puisque chaque noeud donne lieu à deux additions.

Exercice (python) : exécuter cette fonction sur les 3 arbres de la figure ?? en la visualisant sur
pythontutor



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Calcul de la hauteur

def hauteur(arbre: Node) -> int:
"""Renvoie la hauteur de l'arbre"""
if arbre is None:

return 0
return 1 + max(hauteur(arbre.left), hauteur(arbre.right))

Cet algorithme est très similaire à celui du calcul de la hauteur (de l’ordre de 2𝑁 opérations)

Exercice (python) : comme ci-dessus, exécuter cette fonction sur les 3 arbres de la figure ?? en
la visualisant sur pythontutor



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Parcours préfixe, infixe, postfixe I
Les fonctions taille et hauteur, et de manière générale les fonctions qui vont récursivement
parcourir tout l’arbre, peuvent effectuer des opérations avant / après / entre le parcours des
sous-arbres gauches et droits. On appelle cela respectivement : parcours prefixe, parcours
postfixe, et parcours infixe.

def parcours(arbre: Node):
if arbre is None:

return
# si parcours prefixe :
# print(a.valeur, end="")
parcours(arbre.left)
# si parcours infixe



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Parcours préfixe, infixe, postfixe II

# print(a.valeur, end="")
parcours(arbre.right)
# si parcours postfixe
# print(a.valeur, end="")



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Parcours préfixe, infixe, postfixe III

Le type de parcours dépend du type d’opération que l’on souhaite faire

▶ parcours postfixe si on fait “remonter” une information des feuilles vers la racine
▶ parcours prefixe si on fait “descendre” une information de la racine vers les feuilles

Exercice : effectuer le parcours des 3 arbres de la figure ?? en mode préfixe, infixe et postfixe
et constater la différence d’affichage.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Parcours en largeur I

Les parcours précédents effectuaient un parcours en profondeur de l’arbre. Si on veut faire un
parcours en largeur (visiter tous les noeuds à une hauteur donnée avant de passer à la
hauteur suivante), il faut un algorithme différent, utilisant une file (FIFO).



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Parcours en largeur II

Algorithme de parcours en largeur (non récursif)

1. mettre le noeud racine dans la file
2. retirer le noeud du début de la file pour le traiter
3. mettre tous ses enfants dans la file
4. si la file n’est pas vide, reprendre à l’étape 2



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Parcours en largeur III

Implémentation : on va utiliser la classe File basique implémentée dans le chapitre précédent.

class File:
def __init__(self):

self.file = list()
def enfile(self, valeur):

self.file.append(valeur)
def defile(self):

assert len(self.file) > 0, "La file est vide"
return self.file.pop(0)

def nbelts(self):
return len(self.file)



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Parcours en largeur IV

Implémentation en utilisant l’algorithme proposé :

def parcours_largeur(a):
f = File()
f.enfile(a)
while f.nbelts() != 0:

s = f.defile()
print(s.value)
if s.left is not None:

f.enfile(s.left)
if s.right is not None:

f.enfile(s.right)



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Parcours en largeur V

Exercice : vérifier le fonctionnement de cette fonction parcours_largeur dans pytutor en
utilisant les 3 arbres de la figure ??



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Exercices

Exercices



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Exercices

Exercice 1

Ecrire une fonction affiche(arbre) qui imprime un arbre sous la forme suivante

▶ si l’arbre est vide, on n’imprime rien
▶ pour un noeud, on imprime successivement

▶ une parenthèse ouvrante
▶ son sous-arbre gauche (récursivement)
▶ sa valeur
▶ son sous-arbre droit (récursivement)
▶ une parenthèse fermante

Par exemple, l’arbre de la figure doit afficher (((C)B(D))A)



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Exercices

Exercice 2

Dessiner l’arbre binaire pour lequel le programme précédent produit la sortie (A((B)C)). De
manière générale, expliquer comment retrouver la forme de l’arbre dont l’affichage est donné.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Exercices

Exercice 3

Donner 4 arbres de taille 3, tous différents, pour lesquels le parcours infixe affiche 123.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Exercices

Exercice 4
Ecrire une fonction indente qui affiche un arbre de manière indentée, en affichant un tiret
pour les sous-arbres vides.

Exemple de sortie du programme pour l’arbre de la figure (chaque point · représente un
espace)

A
·B
··C
···-
···-
··D
···-
···-
·-



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Exercices

Exercice 5

▶ Ecrire une fonction parfait(h:int) qui prend en argument un nombre entier h supérieur
ou égal à zéro et qui renvoie un arbre binaire parfait de hauteur h

▶ Ecrire une fonction peigne_gauche(h:int) qui prend en argument un nombre entier h
supérieur ou égal à zéro et qui renvoie un peigne gauche (tous les sous-arbres droits sont
vides) de hauteur h

▶ Ecrire une fonction est_peigne_gauche(arbre) qui renvoie True si arbre est un peigne
gauche.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Exercices

Exercice 6

Déterminer quel type de parcours est effecturé si dans la fonction parcours_largeur on
remplace la file (FIFO) par une pile (LIFO).

Quel avantage peut-il y avoir par rapport aux méthodes de parcours récursifs ?



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Arbres binaires de recherche



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Notion d’arbre binaire de recherche

Notion d’arbre binaire de recherche



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Notion d’arbre binaire de recherche

Exemple : organisation d’une bibliothèque

▶ code à 3 lettres : NRS / GHD …
▶ 17576 codes, plein de livres avec le même code
▶ 1 salle par code, deux sorties par salles

Comment organiser les salles pour trouver rapidement les livres ?



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Notion d’arbre binaire de recherche

Notion d’arbre binaire de recherche I

Un arbre binaire de recherche (ou ABR) est un arbre binaire dont les noeuds contiennent des
valeurs qui peuvent être comparées entre elles, et tel que, pour tout noeud de l’arbre :

▶ toutes les valeurs situées dans le sous-arbre gauche sont plus petites que la valeur située
dans le noeud.

▶ toutes les valeurs situées dans le sous-arbre droit sont plus grandes que la valeur située
dans le noeud.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Notion d’arbre binaire de recherche

Notion d’arbre binaire de recherche II

Les deux premiers arbres sont des ABR, celui de droite ne l’est pas. Pourquoi ?



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Notion d’arbre binaire de recherche

Représentation en python

On utilise juste la représentation Node précédente. Les deux contraintes (valeurs pouvant être
compares, et ordre dans l’arbre) sont appliquées dans l’implémentation.

Les fonctions taille, hauteur restent valables pour les ABR.

Le parcours_infixe de l’arbre affiche les éléments dans l’ordre alphabétique.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Notion d’arbre binaire de recherche

Exercice 1

Créer 3 arbres binaires de recherche A, B et C contenant les mots :

▶ arbre
▶ pain
▶ zoo
▶ marin
▶ chaleur
▶ souris



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Notion d’arbre binaire de recherche

Exercice 2

Donner tous les ABR constitués de 3 noeuds et contenant les entiers 1, 2 et 3.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Recherche d’un élément

Recherche d’un élément



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Recherche d’un élément

Principe

On va se diriger dans l’arbre en comparant la valeur à rechercher à la valeur du noeud courant.

▶ si le noeud courant est vide (cas de base), on a rien trouvé => renvoie False
▶ si la valeur à rechercher est strictement plus petite que la valeur du noeud, on va

rechercher dans le sous-arbre gauche
▶ si la valeur à rechercher est strictement plus grande que la valeur du noeud, on va

rechercher dans le sous-arbre droit
▶ sinon c’est que la valeur à rechercher est égale à la valeur du noeud, on a trouvé et en

revoie True.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Recherche d’un élément

Programme

def recherche(x, arbre):
"""renvoie True si x est dans l'ABR arbre"""
if arbre is None:

return False
if x < arbre.value:

return recherche(x, arbre.left)
if x > arbre.value:

return recherche(x, arbre.right)
return True



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Recherche d’un élément

Exercice 1

Exécuter sous pythontutor la fonction recherche sur les arbres A, B et C de l’exercice
précédent, en cherchant soit un mot existant, soit un mot inexistant, et observer le
déroulement de la recherche.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Recherche d’un élément

Efficacité
On a vu que pour un arbre de taille N, on avant ℎ ≤ 𝑁 ≤ 2ℎ − 1 avec les deux cas extrèmes
des arbres linéaires (dont les peignes) et les arbrs parfaits.

Si l’arbre n’est pas équilibré (au pire, arbre linéaire) on peut avoir une recherche qui parcourt
jusqu’à N éléments

Si l’arbre est équilibré (au mieux, arbre parfait), on a une recherche qui parcourra la hauteur
de l’arbre équilibré. On a dans ce cas 𝑁 = 2ℎ − 1 soit environ 𝑁 = 2ℎ et donc
ℎ = log2(𝑁) = ln 𝑁

ln 2

Concrètement, avec une liste de mots de 336000 mots, on aura une recherche en
log2(336000) = 13 étapes.

De manière générale, le coût d’une recherche dans un ABR est au pire sa hauteur, et donc
dépend grandement de la manière dont il a été construit.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Recherche d’un élément

Exercice 2

Dans un ABR, où se trouve le plus petit élémént ? En déduire une fontion minimum(arbre)
qui renvoie le plus petit élémént de l’ABR (si l’arbre est vide, cette fonction renvoie None).



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d’un élément

Ajout d’un élément



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d’un élément

Principe
Dans le principe, ajouter un élément n’est pas plus compliqué que de le rechercher :

▶ si il est plus petit on va à gauche
▶ si il est plus grand, on va à droite
▶ quand on arrive à un arbre vide, on ajoute un noeud



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d’un élément

Solution 1 - modification en place
def ajoute(arbre, elt):

if elt < arbre.value:
if arbre.left is None:

arbre.left = Node(None, elt, None)
return

ajoute(arbre.left, elt)
if elt > arbre.value:

if arbre.right is None:
arbre.right = Node(None, elt, None)
return

ajoute(arbre.right, elt)

Problème : si l’arbre est vide, notre fonction ajoute ne fonctionne pas.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d’un élément

Exemple avec solution 1
import random

with open("corpus2.txt", "r") as l:
lines = [m[:-1] for m in l.readlines()]

random.shuffle(lines)

arbre = None
start = time.clock()
for mot in lines:

if arbre is None:
arbre = Node(None, mot, None)

else:
ajoute(arbre, mot)

print(f"Durée : {time.clock()-start:2.2f}")

Durée : 4.82s



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d’un élément

Solution 2 - noeuds immuables

On peut résoudre ce problème en ne modifiant pas l’arbre en place, mais en renvoyant de
nouveaux noeuds à chaque fois.

def ajoute(a, elt):
""" ajoute elt à l'arbre a, renvoie un nouvel arbre """
if a is None:

return Node(None, elt, None)
if elt < a.value:

return Node(ajoute(a.left, elt), a.value, a.right)
if elt > a.value:

return Node(a.left, a.value, ajoute(a.right, elt))
return Node(a.left, a.value, a.right)



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d’un élément

Exemple avec solution 2

import random
import time
with open("corpus2.txt", "r") as l:

lines = [m[:-1] for m in l.readlines()]
random.shuffle(lines)
arbre = None
start = time.clock()
for mot in lines:

arbre = ajoute2(arbre, mot)
print(f"Durée : {time.clock()-start:2.2f}")

Durée : 12.51s



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d’un élément

Comparaison

La solution 1 est moins élégante, mais plus rapide que la 2 (13 secondes contre 5 secondes
environ pour 336000 mots). En effet, il faut rajouter le temps d’allocation en mémoire de la
création d’un nouveau noeud.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d’un élément

Solution 1bis I

On peut renvoyer à chaque fois l’arbre, de manière “mixer” la création de nouveau noeud pour
l’arbre vide et la modification en place pour un arbre existant.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d’un élément

Solution 1bis II
def ajoute(arbre, elt):

if arbre is None:
return Node(None, elt, None)

if elt < arbre.value:
if arbre.left is None:

arbre.left = Node(None, elt, None)
else:

ajoute(arbre.left, elt)
if elt > arbre.value:

if arbre.right is None:
arbre.right = Node(None, elt, None)

else:
ajoute(arbre.right, elt)

return arbre



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d’un élément

Eléments déjà présents

Dans les implémentations précédentes, si un élément est déjà présent, il n’est pas rajouté une
deuxième fois à l’ABR. Notre ABR crée donc un ensemble (par définition, un ensemble
comporte un exemplaire unique de chaque élément).

On peut avoir besoin d’un multiensemble. Dans ce cas on peut modifier la fonction ajout pour
que chaque élément soit systématiquement ajouté.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d’un élément

Efficacité / arbre équilibré

L’ajout tel que nous l’avons implémenté est comparable à la recherche.

Selon la manière dont est construit un ABR, sa hauteur (et donc le nombre d’opérations à faire
pour une recherche ou un ajout) peut varier (ℎ ≤ 𝑁 ≤ 2ℎ − 1 soit 𝑙𝑛(𝑁) ≤ ℎ ≤ 𝑁)

Pour N = 336000, on a donc 13 ≤ ℎ ≤ 336000 !

Si la hauteur est trop grande, on ne pourra même pas rechercher, le python déclenchant une
exception RecursionError.

L’idéal est de s’approcher au mieux d’un arbre parfait. On dit alors que l’arbre est équilibré.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d’un élément

Construction d’un arbre équilibré

En gros, le principe (pas au programme) est de réorganiser pendant la construction la structure
de l’ABR pour éviter que la hauteur ne devienne trop grande.

On peut montrer que si les éléments à ajouter sont “mélangés”, on s’approche pas trop mal
d’un arbre équilibré (c’est ce que nous avons fait avec le random.shuffle)



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d’un élément

Exercice 1

En vous inspirant des fonctions ajoute précédentes, créer une fonction majoute qui crée un
multiensemble si des doublons sont présents.



Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d’un élément

Exercice 2

Créer une fonction remplir(arbre, liste) qui ajoute tous les éléments de l’arbre arbre
dans la liste liste, dans l’ordre infixe.

Utiliser cette fonction pour créer une fonction trier(liste) qui reçoit en argument une liste
d’entiers mélangés et renvoie une liste triée contenant les mêmes éléments.

Remarque : selon la fonction d’ajout choisie, la liste renvoyée sera non seulement triée, mais
aussi dédupliquée.

Discuter de l’efficacité de cette maniere de trier.


	Programme
	Partie structures de données
	Partie algorithmique

	Arbres binaires
	Définition et propriétés
	Réprésentation en python
	Algorithmique des arbres binaires
	Exercices

	Arbres binaires de recherche
	Notion d’arbre binaire de recherche
	Recherche d’un élément
	Ajout d’un élément


