Algorithmes sur les arbres binaires et les arbres binaires de recherche

Algorithmes sur les arbres binaires et les arbres binaires de

recherche

05 janvier 2026

R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRREEEEEZmS
Algorithmes sur les arbres binaires et les arbres binaires de recherche

Programme

Programme

R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRREEEEEZmS
Algorithmes sur les arbres binaires et les arbres binaires de recherche

Programme

Partie structures de données

Partie structures de données

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Programme

Partie structures de données

Partie structures de données

Contenus

P> Arbres : structures hiérarchiques.
D> Arbres binaires : nceuds, racines, feuilles, sous-arbres gauches, sous-arbres droits.

Capacités attendues

P> Identifier des situations nécessitant une structure de données arborescente.
P Evaluer quelques mesures des arbres binaires (taille, encadrement de la hauteur, etc.).

Commentaires

P> On fait le lien avec la rubrique « algorithmique ».

R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRREEEEEZmS
Algorithmes sur les arbres binaires et les arbres binaires de recherche

Programme

Partie algorithmique

Partie algorithmique

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Programme

L Partie algorithmique

Partie algorithmique
Contenus
P> Algorithmes sur les arbres binaires et sur les arbres binaires de recherche.

Capacités attendues

P Calculer la taille et la hauteur d’un arbre.
P> Parcourir un arbre de différentes facons (ordres infixe, préfixe ou suffixe; ordre en largeur
d'abord).

P Rechercher une clé dans un arbre de recherche, insérer une clé.
Commentaires

P> Une structure de données récursive adaptée est utilisée.
P L'exemple des arbres permet d'illustrer la programmation par classe.
P La recherche dans un arbre de recherche équilibré est de cofit logarithmique.

R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRREEEEEZmS
Algorithmes sur les arbres binaires et les arbres binaires de recherche

Arbres binaires

Arbres binaires

R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRREEEEEZmS
Algorithmes sur les arbres binaires et les arbres binaires de recherche

Arbres binaires

Définition et propriétés

Définition et propriétés

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

L Définition et propriétés
Définitions |

Les arbres binaires sont une famille particuliére des arbres.

Un arbre binaire non vide est constitué d’un ensemble fini de noeuds correspondant a I'un des
deux cas suivants :

P Soit I'arbre est vide (il ne contient aucun noeud)
P> Soit I'arbre n'est pas vide, et ses noeuds sont structurés de la maniére suivante :
P un noeud est appelé la racine de I'arbre
P les noeuds restants sont séparés en deux sous-ensembles, qui forment récursivement deux
sous-arbres appelés respectivement sous arbre gauche et sous arbre droit
P la racine est reliée a la racine de chacun de ses sous-arbres gauche et droit (lorsqu'ils ne sont
pas vides)

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Définition et propriétés

Définitions Il

Dans un arbre binaire, chaque noeud est donc toujours relié a deux sous-arbres, éventuellement

vides.

Lorsqu’un noeud est relié a deux sous-arbres vides, on dit que c'est une feuille, ou un noeud

terminal.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Définition et propriétés

Définitions Il

La taille d'un arbre (binaire ou non) est son nombre de noeuds.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Définition et propriétés

Définitions IV

Exercice :

P> dessiner tous les arbres binaires possédant 4 noeuds.
P déterminer la hauteur minimale et maximale des arbres binaires 3 4 noeuds

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

L Définition et propriétés

Hauteur d'un arbre |

La hauteur d'un arbre (binaire ou non) est le plus grand nombre de noeuds rencontrés en

descendant de la racine jusqu'a une feuille (en comptant la feuille et la racine).

P La hauteur d’un arbre vide est nulle
P La hauteur d’un arbre non vide est la hauteur du maximum des hauteurs de ses deux

sous-arbres, plus 1.

Cette définition est plus adaptée que celle comptant le nombre de liens car elle permet de

donner une hauteur a un arbre vide.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Définition et propriétés

Hauteur d'un arbre Il

Si N désigne la taille d'un arbre binaire, et si h désigne sa hauteur, alors

h<N<2h_—1

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Définition et propriétés

Hauteur d'un arbre Il

Pour la premiére partie, on a h = N pour un arbre “linéaire” : cf figure ??. Les deux extrémes

(que des sous arbres gauches ou droits) sont appelés des peignes.

£ 40

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Définition et propriétés

Hauteur d'un arbre IV

La deuxieme parte, N = 2 — 1, est atteinte dans un arbre oli toutes feuilles sont exactement a
la méme hauteur. On appelle ce type d’arbre un arbre parfait (voir figure 77).

R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRREEEEEZmS
Algorithmes sur les arbres binaires et les arbres binaires de recherche

Arbres binaires

Réprésentation en python

Réprésentation en python

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Réprésentation en python

Noeud d'un arbre binaire |

Un noeud est caractérisé par :

P une valeur
P> sa liaison avec la racine de son sous-arbre droit
P> sa liaison avec la racine de son sous-arbre gauche

On peut (par exemple) donc le représenter par une classe :

class Node:
def __init__(self, left, value, right):
self.value = value
self.left = left
self.right = right

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Réprésentation en python

Noeud d'un arbre binaire |l
Si le sous-arbre droit ou gauche est nul, alors I'attribut 1eft ou right prend la valeur None.

On pourrait aussi rajouter un attribut parent si nécessaire (mais peu utile et compliqué dans
les faits).

Exemple :

(»
(=)
© ©

I"arbre de la figure 42 est défini par

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Réprésentation en python

Noeud d'un arbre binaire Ill

a = Node(Node(Node (None,"C",None),
"Bll .
Node (None,"D",None)),
llAll .

None)

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Réprésentation en python

Noeud d'un arbre binaire IV
On peut aussi l'écrire sous une forme plus "arbre”
a = Node(

Node (

Node (
None,
e,
None),

-1

Node (
None,
np,
None)),

U

None)

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Réprésentation en python

Noeud d'un arbre binaire V

En utilisant pythontutor, on peut visualiser la structure correspondante (figure ?7)

Algorithmes sur les arbres binaires et les arbres binaires de recherche

Arbres binaires

Réprésentation en python

Noeud d'un arbre binaire VI

Frames Objects

Global frame Mode class

function

Node |& = i
L. S it (seif. Left, value, right)

als

Node instance
left

right

value | "A"

Noda Instance: Node instance
left \ left | None
right L right | None

value ‘B‘\ value | "C"

ode Instance

left |None

right [None

walue | "D"

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Réprésentation en python

Noeud d'un arbre binaire VII
Exercice (python) :

P> créer en python les 3 arbres de la figure ?? en utilisant la classe Node
P> vérifier en les visualisant sur pythontutor

() () ()

°

OO o (© @ & (6
(®)

R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRREEEEEZmS
Algorithmes sur les arbres binaires et les arbres binaires de recherche

Arbres binaires

Algorithmique des arbres binaires

Algorithmique des arbres binaires

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Opérations récursives |

La définition d'un arbre binaire est intrinséquement récurive (chaque noeud posséde deux
sous-arbres) ; la récursivité est donc assez “naturelle” pour effectuer des opérations sur les
arbres.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

L Algorithmique des arbres binaires

Opérations récursives |l

def operation(arbre, paramétres):
si arbre est vide:
quitter, éventuellement en renvoyant une valeur

faire 1'opération sur le sous—arbre gauche

en transmettant éventuellement des paramétres

en récupérant éventuellement la valeur de retour de 1'opération
faire 1'opération sur le sous-arbre droit

en transmettant éventuellement des paramétres

en récupérant éventuellement la valeur de retour de 1'opération
quitter, éventuellement en utiliser les résultats

des sous-arbres et/ou la valeur du noeur pour renvoyer une valeur

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Calcul de la taille

def taille(arbre: Node) -> int:

mwmn

"""Renvoie le nmnombre de moeuds de l'arbre
if arbre is None:
return O

return 1 + taille(arbre.left) + taille(arbre.right)

Nous avons une fonction doublement récursive. Si la taille de I'arbre est N, alors avec cet
algorithme récursif chaque noeud est parcouru une seule fois, et on effectue donc un nombre
d’opérations de I'ordre de 2 X N, puisque chaque noeud donne lieu a deux additions.

Exercice (python) : exécuter cette fonction sur les 3 arbres de la figure ?? en la visualisant sur

pythontutor

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Calcul de la hauteur

def hauteur(arbre: Node) -> int:
"""Renvoie la hauteur de 1l'arbre"""
if arbre is None:
return 0O

return 1 + max(hauteur(arbre.left), hauteur(arbre.right))
Cet algorithme est trés similaire a celui du calcul de la hauteur (de I'ordre de 2N opérations)

Exercice (python) : comme ci-dessus, exécuter cette fonction sur les 3 arbres de la figure ?? en

la visualisant sur pythontutor

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Parcours préfixe, infixe, postfixe |

Les fonctions taille et hauteur, et de maniére générale les fonctions qui vont récursivement
parcourir tout I'arbre, peuvent effectuer des opérations avant / aprés / entre le parcours des
sous-arbres gauches et droits. On appelle cela respectivement : parcours prefixe, parcours
postfixe, et parcours infixe.

def parcours(arbre: Node):
if arbre is None:
return
si parcours prefize
print (a.valeur, end="")
parcours (arbre.left)

si parcours infize

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Parcours préfixe, infixe, postfixe I

print (a.valeur, end="")
parcours (arbre.right)
si parcours postfize

print (a.valeur, end="")

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Parcours préfixe, infixe, postfixe Ill

Le type de parcours dépend du type d'opération que |'on souhaite faire

P> parcours postfixe si on fait “remonter” une information des feuilles vers la racine

P> parcours prefixe si on fait “descendre” une information de la racine vers les feuilles

Exercice : effectuer le parcours des 3 arbres de la figure ?? en mode préfixe, infixe et postfixe
et constater la différence d'affichage.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Parcours en largeur |

Les parcours précédents effectuaient un parcours en profondeur de I'arbre. Si on veut faire un
parcours en largeur (visiter tous les noeuds a une hauteur donnée avant de passer a la
hauteur suivante), il faut un algorithme différent, utilisant une file (FIFO).

()
(2) (2)
ONONONCO

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Parcours en largeur |l

Algorithme de parcours en largeur (non récursif)

mettre le noeud racine dans la file
retirer le noeud du début de la file pour le traiter
mettre tous ses enfants dans la file

=

si la file n'est pas vide, reprendre a I'étape 2

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Parcours en largeur Il

Implémentation : on va utiliser la classe File basique implémentée dans le chapitre précédent.

class File:

def __init__(self):
self.file = 1list()

def enfile(self, valeur):
self.file.append(valeur)

def defile(self):
assert len(self.file) > 0, "La file est vide"
return self.file.pop(0)

def nbelts(self):
return len(self.file)

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Parcours en largeur |V

Implémentation en utilisant I'algorithme proposé :

def parcours_largeur(a):

f = File(Q

f.enfile(a)

while f.nbelts() != O:
s = f.defile()
print(s.value)
if s.left is not Nonme:

f.enfile(s.left)

if s.right is not Nonme:

f.enfile(s.right)

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Algorithmique des arbres binaires

Parcours en largeur V

Exercice : vérifier le fonctionnement de cette fonction parcours_largeur dans pytutor en
utilisant les 3 arbres de la figure ??

R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRREEEEEZmS
Algorithmes sur les arbres binaires et les arbres binaires de recherche

Arbres binaires

Exercices

Exercices

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Exercices

Exercice 1

Ecrire une fonction affiche (arbre) qui imprime un arbre sous la forme suivante

P> si I'arbre est vide, on n'imprime rien
P pour un noeud, on imprime successivement
P> une parenthése ouvrante
P son sous-arbre gauche (récursivement)
P sa valeur
P son sous-arbre droit (récursivement)
P> une parenthése fermante

Par exemple, I'arbre de la figure doit afficher (((C)B(D))A)

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Exercices

Exercice 2

Dessiner I'arbre binaire pour lequel le programme précédent produit la sortie (A((B)C)). De
maniere générale, expliquer comment retrouver la forme de I'arbre dont I'affichage est donné.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Exercices

Exercice 3

Donner 4 arbres de taille 3, tous différents, pour lesquels le parcours infixe affiche 123.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Exercices

Exercice 4
Ecrire une fonction indente qui affiche un arbre de maniére indentée, en affichant un tiret

pour les sous-arbres vides.

Exemple de sortie du programme pour I'arbre de la figure (chaque point - représente un

espace)

A
‘B

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

L Exercices

Exercice 5

P Ecrire une fonction parfait(h:int) qui prend en argument un nombre entier h supérieur

ou égal a zéro et qui renvoie un arbre binaire parfait de hauteur h

P> Ecrire une fonction peigne_gauche(h:int) qui prend en argument un nombre entier h
supérieur ou égal a zéro et qui renvoie un peigne gauche (tous les sous-arbres droits sont
vides) de hauteur h

P Ecrire une fonction est_peigne_gauche (arbre) qui renvoie True si arbre est un peigne

gauche.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires

Exercices

Exercice 6

Déterminer quel type de parcours est effecturé si dans la fonction parcours_largeur on
remplace la file (FIFO) par une pile (LIFO).

Quel avantage peut-il y avoir par rapport aux méthodes de parcours récursifs 7

R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRREEEEEZmS
Algorithmes sur les arbres binaires et les arbres binaires de recherche

Arbres binaires de recherche

Arbres binaires de recherche

R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRREEEEEZmS
Algorithmes sur les arbres binaires et les arbres binaires de recherche

Arbres binaires de recherche

Notion d’arbre binaire de recherche

Notion d’arbre binaire de recherche

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Notion d’arbre binaire de recherche

Exemple : organisation d'une bibliotheque

P code 2 3 lettres : NRS / GHD ..
P> 17576 codes, plein de livres avec le méme code
P 1 salle par code, deux sorties par salles

Comment organiser les salles pour trouver rapidement les livres ?

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

L Notion d'arbre binaire de recherche

Notion d’arbre binaire de recherche |

Un arbre binaire de recherche (ou ABR) est un arbre binaire dont les noeuds contiennent des
valeurs qui peuvent étre comparées entre elles, et tel que, pour tout noeud de I'arbre :

P> toutes les valeurs situées dans le sous-arbre gauche sont plus petites que la valeur située
dans le noeud.

P> toutes les valeurs situées dans le sous-arbre droit sont plus grandes que la valeur située
dans le noeud.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Notion d’arbre binaire de recherche

Notion d'arbre binaire de recherche Il

Les deux premiers arbres sont des ABR, celui de droite ne I'est pas. Pourquoi ?

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Notion d’arbre binaire de recherche

Représentation en python

On utilise juste la représentation Node précédente. Les deux contraintes (valeurs pouvant &tre
compares, et ordre dans |'arbre) sont appliquées dans I'implémentation.

Les fonctions taille, hauteur restent valables pour les ABR.

Le parcours_infixe de I'arbre affiche les éléments dans I'ordre alphabétique.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Notion d’arbre binaire de recherche

Exercice 1

Créer 3 arbres binaires de recherche A, B et C contenant les mots :

arbre
pain
Z00
marin

chaleur

VVVVYVYY

souris

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Notion d’arbre binaire de recherche

Exercice 2

Donner tous les ABR constitués de 3 noeuds et contenant les entiers 1, 2 et 3.

R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRREEEEEZmS
Algorithmes sur les arbres binaires et les arbres binaires de recherche

Arbres binaires de recherche

Recherche d'un élément

Recherche d'un élément

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

L Recherche d'un élément

Principe

On va se diriger dans I'arbre en comparant la valeur a rechercher a la valeur du noeud courant.

P> si le noeud courant est vide (cas de base), on a rien trouvé => renvoie False

P si la valeur a rechercher est strictement plus petite que la valeur du noeud, on va
rechercher dans le sous-arbre gauche

P> si la valeur A rechercher est strictement plus grande que la valeur du noeud, on va
rechercher dans le sous-arbre droit

P> sinon c'est que la valeur 3 rechercher est égale 3 la valeur du noeud, on a trouvé et en
revoie True.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Recherche d'un élément

Programme

def recherche(x, arbre):
"""renvoie True st x est dans l'ABR arbre"""
if arbre is None:
return False
if x < arbre.value:
return recherche(x, arbre.left)
if x > arbre.value:
return recherche(x, arbre.right)

return True

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Recherche d'un élément

Exercice 1

Exécuter sous pythontutor la fonction recherche sur les arbres A, B et C de |'exercice
précédent, en cherchant soit un mot existant, soit un mot inexistant, et observer le
déroulement de la recherche.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

L Recherche d'un élément

Efficacité

On a vu que pour un arbre de taille N, on avant h < N < 2" — 1 avec les deux cas extrémes

des arbres linéaires (dont les peignes) et les arbrs parfaits.

Si I'arbre n'est pas équilibré (au pire, arbre linéaire) on peut avoir une recherche qui parcourt

jusqu'a N éléments

Si I'arbre est équilibré (au mieux, arbre parfait), on a une recherche qui parcourra la hauteur
de I'arbre équilibré. On a dans ce cas N = 2" — 1 soit environ N = 2" et donc
h =log,(N) = &t

In2
Concrétement, avec une liste de mots de 336000 mots, on aura une recherche en

log, (336000) = 13 étapes.

De maniere générale, le colit d'une recherche dans un ABR est au pire sa hauteur, et donc

dépend grandement de la maniere dont il a été construit.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Recherche d'un élément

Exercice 2

Dans un ABR, ou se trouve le plus petit élémént ? En déduire une fontion minimum(arbre)
qui renvoie le plus petit élémént de I'’ABR (si I'arbre est vide, cette fonction renvoie None).

R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRREEEEEZmS
Algorithmes sur les arbres binaires et les arbres binaires de recherche

Arbres binaires de recherche

Ajout d'un élément

Ajout d'un élément

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d'un élément

Principe
Dans le principe, ajouter un élément n'est pas plus compliqué que de le rechercher :

P siil est plus petit on va 3 gauche
P si il est plus grand, on va a droite
P quand on arrive 3 un arbre vide, on ajoute un noeud

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d'un élément

Solution 1 - modification en place

def ajoute(arbre, elt):
if elt < arbre.value:
if arbre.left is Nome:
arbre.left = Node(None, elt, None)
return
ajoute(arbre.left, elt)
if elt > arbre.value:
if arbre.right is Nome:
arbre.right = Node(None, elt, None)
return

ajoute(arbre.right, elt)

Probléme : si I'arbre est vide, notre fonction ajoute ne fonctionne pas.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d'un élément

Exemple avec solution 1

import random

with open("corpus2.txt", "r") as 1:
lines = [m[:-1] for m in l.readlines()]

random.shuffle(lines)

arbre = None
start = time.clock()
for mot in lines:
if arbre is None:
arbre = Node(None, mot, None)
else:
ajoute(arbre, mot)
print(f"Durée : {time.clock()-start:2.2f}")

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d'un élément

Solution 2 - noeuds immuables

On peut résoudre ce probléme en ne modifiant pas I'arbre en place, mais en renvoyant de

nouveaux noeuds a chaque fois.

def ajoute(a, elt):
""roggjoute elt a l'arbre a, renvoie un nouvel arbre """
if a is None:
return Node(None, elt, None)
if elt < a.value:
return Node(ajoute(a.left, elt), a.value, a.right)
if elt > a.value:
return Node(a.left, a.value, ajoute(a.right, elt))

return Node(a.left, a.value, a.right)

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d'un élément

Exemple avec solution 2

import random
import time
with open("corpus2.txt", "r") as 1:
lines = [m[:-1] for m in l.readlines()]
random.shuffle(lines)
arbre = None
start = time.clock()
for mot in lines:
arbre = ajoute2(arbre, mot)
print (f"Durée : {time.clock()-start:2.2f}")

Durée : 12.51s

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d'un élément

Comparaison

La solution 1 est moins élégante, mais plus rapide que la 2 (13 secondes contre 5 secondes
environ pour 336000 mots). En effet, il faut rajouter le temps d'allocation en mémoire de la
création d'un nouveau noeud.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d'un élément

Solution 1bis |

On peut renvoyer a chaque fois I'arbre, de maniére “mixer” la création de nouveau noeud pour
I"arbre vide et la modification en place pour un arbre existant.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d'un élément

Solution 1bis Il

def ajoute(arbre, elt):
if arbre is None:
return Node(None, elt, None)
if elt < arbre.value:
if arbre.left is Nome:
arbre.left = Node(None, elt, None)
else:
ajoute(arbre.left, elt)
if elt > arbre.value:
if arbre.right is Nonme:
arbre.right = Node(None, elt, None)
else:
ajoute(arbre.right, elt)

return arbre

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d'un élément
:

Eléments déja présents

Dans les implémentations précédentes, si un élément est déja présent, il n'est pas rajouté une
deuxiéme fois a I'ABR. Notre ABR crée donc un ensemble (par définition, un ensemble

comporte un exemplaire unique de chaque élément).

On peut avoir besoin d'un multiensemble. Dans ce cas on peut modifier la fonction ajout pour

que chaque élément soit systématiquement ajouté.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

L~ Ajout d'un élément

Efficacité / arbre équilibré

L'ajout tel que nous I'avons implémenté est comparable a la recherche.

Selon la maniére dont est construit un ABR, sa hauteur (et donc le nombre d'opérations a faire
pour une recherche ou un ajout) peut varier (h < N < 2" — 1 soit In(N) < h < N)

Pour N = 336000, on a donc 13 < h < 336000 !

Si la hauteur est trop grande, on ne pourra méme pas rechercher, le python déclenchant une

exception RecursionError.

L'idéal est de s’approcher au mieux d'un arbre parfait. On dit alors que |'arbre est équilibré.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d'un élément
:

Construction d'un arbre équilibré

En gros, le principe (pas au programme) est de réorganiser pendant la construction la structure

de I'ABR pour éviter que la hauteur ne devienne trop grande.

On peut montrer que si les éléments a ajouter sont “mélangés”, on s’approche pas trop mal
d'un arbre équilibré (c’est ce que nous avons fait avec le random. shuffle)

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

Ajout d'un élément

Exercice 1

En vous inspirant des fonctions ajoute précédentes, créer une fonction majoute qui crée un
multiensemble si des doublons sont présents.

Algorithmes sur les arbres binaires et les arbres binaires de recherche
Arbres binaires de recherche

L~ Ajout d'un élément

Exercice 2

Créer une fonction remplir(arbre, liste) qui ajoute tous les éléments de I'arbre arbre
dans la liste 1iste, dans |'ordre infixe.

Utiliser cette fonction pour créer une fonction trier(liste) qui recoit en argument une liste

d’entiers mélangés et renvoie une liste triée contenant les mémes éléments.

Remarque : selon la fonction d'ajout choisie, la liste renvoyée sera non seulement triée, mais
aussi dédupliquée.

Discuter de |'efficacité de cette maniere de trier.

	Programme
	Partie structures de données
	Partie algorithmique

	Arbres binaires
	Définition et propriétés
	Réprésentation en python
	Algorithmique des arbres binaires
	Exercices

	Arbres binaires de recherche
	Notion d’arbre binaire de recherche
	Recherche d’un élément
	Ajout d’un élément

