
24-NSIJ1ME1 Page : 1 / 15

BACCALAURÉAT GÉNÉRAL

ÉPREUVE D’ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2024

NUMÉRIQUE ET SCIENCES INFORMATIQUES

ÉPREUVE DU MERCREDI 19 JUIN 2024

Durée de l’épreuve : 3 heures 30

L’usage de la calculatrice n’est pas autorisé.

Dès que ce sujet vous est remis, assurez-vous qu’il est complet.

Ce sujet comporte 15 pages numérotées de 1 / 15 à 15 / 15

Le sujet est composé de trois exercices indépendants.

Le candidat traite les trois exercices.

24-NSIJ1ME1 Page : 9 / 15

EXERCICE 3 (8 points)

Cet exercice porte sur la programmation orientée objet, sur les arbres binaires de
recherche et la récursivité.

Chaque année, plusieurs courses de chiens de traîneaux sont organisées sur les
terrains enneigés. L’une d’elle, La Traversée Blanche, est une course se déroulant en
9 étapes. L’organisateur de cette course est chargé de créer un programme Python
pour aider à la bonne gestion de l’événement.

Partie A : la classe Chien

Afin de caractériser un chien, l’organisateur décide de créer une classe Chien avec
les attributs suivants :

• id_chien, un nombre entier correspondant au numéro attribué au chien lors de
son inscription à la course ;

• nom, une chaîne de caractères correspondant au nom du chien ;
• role, une chaîne de caractères correspondant au poste occupé par le chien :

en fonction de sa place dans l’attelage, un chien a un rôle bien défini et peut
être 'leader', 'swing dog', 'wheel dog' ou 'team dog'.

• id_proprietaire, un nombre entier correspondant au numéro de l’équipe.

Le code Python incomplet de la classe Chien est donné ci-dessous.

1 class Chien:
2 def __init__(self, id_chien, nom, role, id_prop):
3 self.id_chien = id_chien
4 self.nom = nom
5 self.role = role
6 self.id_proprietaire = id_prop

7 def changer_role(self, nouveau_role):
8 """Change le rôle du chien avec la valeur passée en
 paramètre."""
9 ...

24-NSIJ1ME1 Page : 10 / 15

Voici un extrait des informations dont on dispose sur les chiens inscrits à la course.

Chiens inscrits à la course

id_chien nom role id_proprietraire

40 Duke wheel dog 10

41 Sadie team dog 10

42 Zeus swing dog 11

43 Roxie swing dog 11

44 Scout team dog 11

45 Ginger team dog 11

46 Helka team dog 11

Suite aux inscriptions, l’organisateur procède à la création de tous les objets de type
Chien et les stocke dans des variables en choisissant un nom explicite. Ainsi, l’objet
dont l’attribut id_chien a pour valeur 40 est stocké dans la variable chien40.

1. Écrire l’instruction permettant d’instancier l’objet chien40 caractérisant le chien
ayant le numéro d’inscription 40.

2. Selon l’état de fatigue de ses chiens ou du profil de l’étape, le musher (nom
donné à la personne qui conduit le traîneau) peut décider de changer le rôle
des chiens dans l’attelage.
Recopier et compléter la méthode changer_role de la classe Chien.

3. Le propriétaire de Duke décide de lui attribuer le rôle de 'leader'.
Écrire l’instruction permettant d’effectuer cette modification.

Partie B : la classe Equipe

On souhaite à présent créer une classe Equipe ayant les attributs suivants :

• num_dossard, un nombre entier correspondant au numéro inscrit sur le dossard
du musher ;

• nom_equipe, une chaîne de caractères correspondant au nom de l’équipe ;
• liste_chiens, une liste d’objets de type Chien dont chaque élément

correspond à un chien au départ de l’étape du jour ;
• temps_etape, une chaîne de caractères (par exemple '2h34') représentant le

temps mis par l’équipe pour parcourir l’étape du jour ;
• liste_temps, une liste de chaînes de caractères permettant de stocker les

temps de l’équipe pour chacune des 9 étapes. Cet attribut peut, par exemple,
contenir la liste : ['4h36', '3h57', '3h09', '5h49', '4h45', '3h26',
'4h57', '5h52', '4h31'].

24-NSIJ1ME1 Page : 11 / 15

On donne le code Python suivant de la classe Equipe.

1 class Equipe:
2 def __init__(self, num_dossard, nom_equipe):
3 self.num_dossard = num_dossard
4 self.nom_equipe = nom_equipe
5 self.liste_chiens = []
6 self.temps_etape = ''
7 self.liste_temps = []
8
9 def ajouter_chien(self, chien):
10 self.liste_chiens.append(chien)
11
12 def retirer_chien(self, numero):
13 ...
14
15 def ajouter_temps_etape(self, temps):
16 self.liste_temps.append(temps)

Pour la première étape, le musher de l’équipe numéro 11, représentée en Python par
l’objet eq11, décide de constituer une équipe avec les quatre chiens identifiés par les
numéros 42, 44, 45 et 46. On donne ci-dessous les instructions Python permettant de
créer l’équipe eq11 et l’attelage constitué des 4 chiens précédents.

1 eq11 = Equipe(11, 'Malamutes Endurants')
2 eq11.ajouter_chien(chien42)
3 eq11.ajouter_chien(chien44)
4 eq11.ajouter_chien(chien45)
5 eq11.ajouter_chien(chien46)

Malheureusement, le musher s’aperçoit que sa chienne Helka, chien numéro 46, n’est
pas au mieux de sa forme et il décide de la retirer de l’attelage.

4. Recopier et compléter la méthode retirer_chien ayant pour paramètre
numero, un entier correspondant au numéro attribué au chien lors de
l’inscription, et permettant de mettre à jour l’attribut liste_chiens après retrait
du chien dont la valeur de l’attribut id_chien est numero.

5. En vous aidant de la fonction précédente, écrire l’instruction qui permet de
retirer Helka de l’attelage de l’équipe eq11.

On donne à présent le code Python d’une fonction convert prenant pour paramètre
chaine, une chaîne de caractères représentant une durée, donnée en heure et minute.
On supposera que cette durée est toujours strictement inférieure à 10 heures, temps
maximal fixé par le règlement pour terminer une étape.

1 def convert(chaine):
2 heure_dec = int(chaine[0]) + int(chaine[2] + chaine[3])/60
3 return heure_dec

24-NSIJ1ME1 Page : 12 / 15

6. Indiquer le résultat renvoyé par l’appel convert('4h36').

7. Écrire une fonction temps_course qui prend pour paramètre equipe de type
Equipe et qui renvoie un nombre flottant correspondant au cumul des temps de
l’équipe equipe à l’issue des 9 étapes de la course.
On rappelle que la classe Equipe dispose d’un attribut liste_temps.

Partie C : classement à l’issue d’une étape

Chaque jour, à la fin de l’étape, on décide de construire un Arbre Binaire de Recherche
(ABR) afin d’établir le classement des équipes. Chaque nœud de cet arbre est un objet
de type Equipe.

Dans cet arbre binaire de recherche, en tout nœud :

• toutes les équipes du sous-arbre gauche sont strictement plus rapides que ce
nœud ;

• toutes les équipes du sous-arbre droit sont moins rapides ou sont à égalité avec
ce nœud.

Voici les temps, en heure et minute, relevés à l’issue de la première étape :

Temps à l’arrivée de la première étape

Equipe eq1 eq2 eq3 eq4 eq5 eq6 eq7 eq8 eq9 eq10 eq11

Temps 4h36 3h57 3h09 5h49 4h45 3h26 4h51 5h52 4h31 3h44 4h26

Dans l’arbre binaire de recherche initialement vide, on ajoute successivement, dans
cet ordre, les équipes eq1, eq2, eq3, …, eq11, 11 objets de la classe Equipe tous
construits sur le même modèle que l’objet eq11 précédent.

8. Dans l’arbre binaire de recherche ci-dessous, les nœuds eq1 et eq2 ont été
insérés. Recopier et compléter cet arbre en insérant les 9 nœuds manquants.

Figure 1. Premiers éléments de l’ABR

9. Indiquer quel parcours d’arbre permet d’obtenir la liste des équipes classées de
la plus rapide à la plus lente.

24-NSIJ1ME1 Page : 13 / 15

On donne ci-dessous la classe Noeud, permettant de définir les arbres binaires :

1 class Noeud:
2 def __init__(self, equipe, gauche = None, droit = None):
3 self.racine = equipe
4 self.gauche = gauche
5 self.droit = droit

On donne ci-dessous le code d’une fonction construction_arbre qui, à partir d’une
liste d’éléments de type Noeud permet d’insérer successivement chaque nœud à sa
place dans l’ABR.

1 def construction_arbre(liste):
2 a = Noeud(liste[0])
3 for i in range(1,len(liste)):
4 inserer(a, liste[i])
5 return a

La fonction construction_arbre fait appel à la fonction inserer qui prend pour
paramètre arb, de type Noeud, et eq, de type Equipe. Cette fonction construit le nœud
à partir de eq et l’insère à sa place dans l’ABR.

1 def inserer(arb, eq):
2 """ Insertion d'une équipe à sa place dans un ABR contenant
3 au moins un noeud."""
4 if convert(eq.temps_etape) < convert(arb.racine.temps_etape):
5 if arb.gauche is None:
6 arb.gauche = ...
7 else:
8 inserer(..., eq)
9 else:
10 if arb.droit is None:
11 arb.droit = Noeud(eq)
12 else:
13 ...

10. Expliquer en quoi la fonction inserer est une fonction récursive.

11. Recopier et compléter les lignes 6, 8 et 13 de la fonction inserer.

12. Recopier et compléter les lignes 3 et 5 de la fonction est_gagnante ci-dessous
qui prend en paramètre un ABR arbre, de type Noeud, et qui renvoie le nom de
l’équipe ayant gagné l’étape.

1 def est_gagnante(arbre):
2 if arbre.gauche == None:
3 return ...
4 else:
5 return ...

24-NSIJ1ME1 Page : 14 / 15

Partie D : classement général

On décide d’établir un classement général obtenu à partir du cumul des temps mis par
chaque équipe pour parcourir l’ensemble des 9 étapes.

Sur le même principe que l’arbre de la partie précédente, on construit l’ABR ci-dessous
qui permet, grâce au parcours d’arbre approprié, d’établir ce classement général des
équipes.

Figure 2. ABR du classement général

Le règlement prévoit la disqualification d’une équipe en cas de non-respect de celui-
ci. Il s’avère que l’équipe 2 et l’équipe 5 doivent être disqualifiées pour manquement
au règlement. Les nœuds eq2 et eq5 doivent donc être supprimés de l’ABR précédent.

Pour supprimer un nœud N dans un ABR, trois possibilités se présentent :

• le nœud N à supprimer est une feuille : il suffit de le retirer de l’arbre ;

• le nœud N à supprimer n’a qu’un seul fils : on relie le fils de N au père de N et
on supprime le nœud N ;

• le nœud N à supprimer possède deux fils : on le remplace par son successeur
(l’équipe qui a le temps immédiatement supérieur) qui est toujours le minimum
de ses descendants droits.

13. Dessiner le nouvel arbre de recherche a_final obtenu après suppression des
équipes eq2 et eq5 dans l’ABR correspondant au classement général.

L’organisateur souhaite disposer d’une fonction rechercher permettant de savoir si
une équipe a été disqualifiée ou non. On donne les spécifications de la fonction
rechercher, prenant en paramètre arbre et equipe.

24-NSIJ1ME1 Page : 15 / 15

1 def rechercher(arbre, equipe):
2 """
3 Paramètres
4 ---------
5 arbre : un ABR, non vide, de type Noeud, représentant le
6 classement général.
7 equipe : un élément, de type Equipe, dont on veut déterminer
8 l'appartenance ou non à l'ABR arbre.
9 Résultat
10 ---------
11 Cette fonction renvoie True si equipe est un nœud de arbre,
12 False sinon.
13 """
14 ...

Pour cette fonction (a_final désigne l’arbre obtenu à la question 13, après
suppression des équipes 2 et 5) :

• l’appel rechercher(a_final, eq1) renvoie True ;

• l’appel rechercher(a_final, eq2) renvoie False.

14. Écrire le code de la fonction rechercher.

