
24-NSIJ2PO1 Page : 1 / 15

BACCALAURÉAT GÉNÉRAL

ÉPREUVE D’ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2024

NUMÉRIQUE ET SCIENCES INFORMATIQUES

JOUR 2

Durée de l’épreuve : 3 heures 30

L’usage de la calculatrice n’est pas autorisé.

Dès que ce sujet vous est remis, assurez-vous qu’il est complet.

Ce sujet comporte 15 pages numérotées de 1 / 15 à 15 / 15.

Le sujet est composé de trois exercices indépendants.

Le candidat traite les trois exercices.

24-NSIJ2PO1 Page : 6 / 15

Exercice 2 (6 points)

Cet exercice porte sur les arbres binaires de recherche, la POO et la récursivité.

Nous disposons d’une classe ABR pour les arbres binaires de recherche dont les clés
sont des entiers :

1 class ABR():
2 def __init__(self) :
3 # Initialise une instance d'ABR vide.
4
5 def cle(self):
6 # Renvoie la clé de la racine de l'instance d'ABR.
7
8 def sad(self):
9 # Renvoie le sous-arbre droit de l'instance d'ABR.
10
11 def sag(self):
12 # Renvoie le sous-arbre gauche de l'instance d'ABR.
13
14 def est_vide(self):
15 # Renvoie True si l'instance d'ABR est vide et False
sinon.
16
17 def inserer(self, cle_a_inserer):
18 # Insère cle_a_inserer à sa place dans l'instance d'ABR.

Considérons ci-dessous trois arbres binaires de recherche :

Fig1. Arbre_1

Fig2. Arbre_2

Fig3. Arbre_3

Dans tout l’exercice, nous ferons référence à ces trois arbres binaires de recherche et
utiliserons la classe ABR et ses méthodes.

24-NSIJ2PO1 Page : 7 / 15

Partie A

1. Un arbre est une structure de données hiérarchique dont chaque élément est
un nœud.

 Recopier et compléter le texte ci-dessous en choisissant des expressions parmi
au maximum, au minimum, exactement, feuille, racine, sous-arbre
gauche et sous-arbre droit :

– Le nœud initial est appelé
– Un nœud qui n’a pas de fils est appelé
– Un arbre binaire est un arbre dans lequel chaque nœud a ... deux fils.
– Un arbre binaire de recherche est un arbre binaire dans lequel tout

nœud est associé à une clé qui est :
• supérieure à chaque clé de tous les nœuds de son ...
• inférieure à chaque clé de tous les nœuds de son

2. Donner dans l’ordre les clés obtenues lors du parcours préfixe de l’arbre no 1.
3. Donner dans l’ordre, les clés obtenues lors du parcours suffixe, également

appelé postfixe, de l’arbre no 2.
4. Donner dans l’ordre, les clés obtenues lors du parcours infixe de l’arbre no 3.
5. Recopier et compléter les instructions ci-dessous afin de définir puis de

construire, en y insérant les clés dans un ordre correct (il y a plusieurs
possibilités, on en demande une) , les trois instances de la classe ABR qui
correspondent aux trois arbres binaires de recherche représentés plus haut.

 1 arbre_no1 = ...
2 arbre_no2 = ...
3 arbre_no3 = ...
4 for cle_a_inserer in [..., ..., ..., ..., ..., ..., ...]:
5 arbre_no1....
6 for cle_a_inserer in [..., ..., ..., ..., ..., ..., ...]:
7 arbre_no2....
8 for cle_a_inserer in [..., ..., ..., ..., ..., ..., ...]:
9 arbre_no3....

6. Voici le code de la méthode hauteur de la classe ABR qui renvoie la hauteur
d’une instance d’ABR:

 1 def hauteur(self):
2 if self.est_vide() :
3 return -1
4 else :

24-NSIJ2PO1 Page : 8 / 15

5 return 1 + max(self.sag().hauteur(),
6 self.sad().hauteur())

 Donner, en utilisant cette méthode, la hauteur des trois instances arbre_no1,
arbre_no2 et arbre_no3 de la classe ABR définies plus haut et qui correspondent
aux trois arbres représentés plus haut.

7. Recopier et compléter le code de la méthode est_presente ci-dessous qui
renvoie True si la clé cle_a_rechercher est présente dans l’instance d’ABR et
False sinon :

 1 def est_present(self, cle_a_rechercher):
2 if self.est_vide() :
3 return ...
4 elif cle_a_rechercher == self.cle() :
5 return ...
6 elif cle_a_rechercher < self.cle() :
7 return ...
8 else :
9 return ...

8. Expliquer quelle instruction, parmi les trois ci-dessous, nécessitera le moins
d’appels récursifs avant de renvoyer son résultat :

– arbre_no1.est_presente(7).
– arbre_no2.est_presente(7).
– arbre_no3.est_presente(7).

Partie B

9. On rappelle que la fonction abs(x) renvoie la valeur absolue de x. Par exemple
:

 >>> abs(3)
3
>>> abs(-2)
2

 On donne la méthode est_partiellement_equilibre(self) de la classe
ABR. Cette méthode renvoie True si l’instance de la classe ABR est
l’implémentation d’un arbre partiellement équilibré et False sinon :

 1. def est_partiellement_equilibre(self) :
2. if self.est_vide() :

 3. return True
4. return abs(self.sag().hauteur() -
self.sad().hauteur()) <= 1)

 Expliquer ce qu’on appelle ici un arbre partiellement équilibré.

24-NSIJ2PO1 Page : 9 / 15

Un arbre binaire est équilibré s’il est partiellement équilibré et si ses deux sous-
arbres, droit et gauche, sont eux-mêmes équilibrés. Un arbre vide est considéré
comme équilibré.

10. Justifier que, parmi les trois arbres définis plus haut, deux sont partiellement
équilibrés.

11. Justifier que, parmi les trois arbres définis plus haut, un seul est équilibré.

12. Définir et coder la méthode récursive est_equilibre de la classe ABR qui
renvoie True si l’instance de la classe ABR est l’implémentation d’un arbre
équilibré et False sinon.

