
Correction exos algos arbres ‑ p1

1 Algos arbre binaires

class Node:
def __init__(self, left, value, right):

self.value = value
self.left = left
self.right = right

a = Node(Node(Node(None,"C",None),
"B",
Node(None,"D",None)),

"A",
None)

a = Node(
Node(

Node(
None,
"C",
None),

"B",
Node(

None,
"D",
None)),

"A",
None)

1

Correction exos algos arbres ‑ p1

1.1 Arbres exemples

arbre1 = Node(
None,
"A",
Node(

Node(None, "C", None),
"B",
Node(None, "D", None)

)
)

arbre2 = \
Node(

None,
"A",
Node(

None,
"B",
Node(

None,
"C",
Node(

None,
"D",
None
)

)

2

Correction exos algos arbres ‑ p1

)
)

arbre3 = \
Node(

Node(
Node(None, "C", None),
"B",
Node(None, "D", None)

),
"A",
Node(

Node(None, "F", None),
"E",
Node(None, "G", None)

)
)

2 Algos sur les arbres

2.1 Calcul de la taille

Algo et application aux exemples
def taille(arbre):

if arbre is None:
return 0

return 1+taille(arbre.left)+taille(arbre.right)

print("Taille arbre 1 : ", taille(arbre1))
print("Taille arbre 2 : ", taille(arbre2))
print("Taille arbre 3 : ", taille(arbre3))

Taille arbre 1 : 4
Taille arbre 2 : 4
Taille arbre 3 : 7

2.2 Calcul de la hauteur

Algo et application aux exemples
def hauteur(arbre):

if arbre is None:

3

Correction exos algos arbres ‑ p1

return 0
return 1 + max(hauteur(arbre.left), hauteur(arbre.right))

print("Hauteur arbre 1", hauteur(arbre1))
print("Hauteur arbre 2", hauteur(arbre2))
print("Hauteur arbre 3", hauteur(arbre3))

Hauteur arbre 1 3
Hauteur arbre 2 4
Hauteur arbre 3 3

2.3 Parcours préfixes, infixes, postfixes

Préfixe
def prefixe(arbre):

if arbre is None:
return

print(arbre.value, end=" ")
prefixe(arbre.left)
prefixe(arbre.right)

prefixe(arbre1); print()
prefixe(arbre2); print()
prefixe(arbre3); print()

A B C D
A B C D
A B C D E F G

Infixe
def infixe(arbre):

if arbre is None:
return

infixe(arbre.left)
print(arbre.value, end=" ")
infixe(arbre.right)

infixe(arbre1); print()
infixe(arbre2); print()
infixe(arbre3); print()

4

Correction exos algos arbres ‑ p1

A C B D
A B C D
C B D A F E G

Post
def postfixe(arbre):

if arbre is None:
return

postfixe(arbre.left)
postfixe(arbre.right)
print(arbre.value, end=" ")

postfixe(arbre1); print()
postfixe(arbre2); print()
postfixe(arbre3); print()

C D B A
D C B A
C D B F G E A

2.4 Parcours en largeur

class File:
def __init__(self):

self.file = list()
def enfile(self, valeur):

self.file.append(valeur)
def defile(self):

assert len(self.file) > 0, "La file est vide"
return self.file.pop(0)

def nbelts(self):
return len(self.file)

Algo et application aux exemples

VARIANTE 1 : on met les noeuds vides dans la file
def parcours_largeur(arbre):

f = File()
f.enfile(arbre)
while f.nbelts() > 0:

cur = f.defile()
if cur is None:

continue

5

Correction exos algos arbres ‑ p1

print(cur.value, end=" ")
f.enfile(cur.left)
f.enfile(cur.right)

print()
parcours_largeur(arbre1)
parcours_largeur(arbre2)
parcours_largeur(arbre3)

A B C D
A B C D
A B E C D F G

VARIANTE : on ne met pas les noeuds vides dans la file
def parcours_largeur(arbre):

f = File()
f.enfile(arbre)
while f.nbelts() > 0:

cur = f.defile()
print(cur.value, end=" ")
if cur.left is not None:

f.enfile(cur.left)
if cur.right is not None:

f.enfile(cur.right)
print()

parcours_largeur(arbre1)
parcours_largeur(arbre2)
parcours_largeur(arbre3)

A B C D
A B C D
A B E C D F G

3 Exercices

3.1 Exercice 1

Ecrire une fonction affiche(arbre) qui imprime un arbre sous la forme suivante

:

6

Correction exos algos arbres ‑ p1

• si l'arbre est vide, on n'imprime rien
• pour un noeud, on imprime successivement

– une parenthèse ouvrante
– son sous‑arbre gauche (récursivement)
– sa valeur
– son sous‑arbre droit (récursivement)
– une parenthèse fermante

Par exemple, l'arbre a du début doit afficher (((C)B(D))A)

def affiche(arbre):
if arbre is None:

print("", end="")
return

print("(", end="")
affiche(arbre.left)
print(arbre.value, end="")
affiche(arbre.right)
print(")", end="")

affiche(a); print()
affiche(arbre1); print()
affiche(arbre2); print()
affiche(arbre3); print()

(((C)B(D))A)
(A((C)B(D)))
(A(B(C(D))))
(((C)B(D))A((F)E(G)))

3.2 Exercice 2

Dessiner l'arbre binaire pour lequel le programme précédent produit la sortie (A((B)C)). De
manière générale, expliquer comment retrouver la forme de l'arbre dont l'affichage est donné.

A
/ \
C
/ \

B

7

Correction exos algos arbres ‑ p1

/ \

On navigue en profondeur dans les parenthèses, en partant de la racine (une seule parenthèse) et en
dessinant au fur et à mesure ce qu'il y a à gauche et à droite, récursivement.

3.3 Exercice 3

Donner 4 arbres de taille 3, tous différents, pour lesquels le parcours infixe affiche 123.

On peut dessiner la forme des arbres en premier :

x x x x x
/ \ / / \ \
x x x x x x

/ \ \ /
x x x x

et ensuite les ”remplir” avec les valeurs dans l'ordre qu'il faut pour que ça donne 123 en infixe :

2 3 3 1 1
/ \ / / \ \
1 3 2 1 2 3

/ \ \ /
1 2 3 2

3.4 Exercice 4

Ecrire une fonction indente qui affiche un arbre demanière indentée, en affichant un tiret pour les
sous‑arbres vides.

Exemple de sortie du programme pour l'arbre de la figure \label{fig:pyrepr1} (chaque point ·
représente un espace)

A
·B
··C
···-
···-

8

Correction exos algos arbres ‑ p1

··D
···-
···-
·-

Il faut faire **DESCENDRE** l'information de profondeur aux enfants =>
argument↪

def indente(arbre, prof=0):
if arbre is None:

print("."*prof+"-")
return

print("."*prof+arbre.value)
indente(arbre.left, prof+1)
indente(arbre.right, prof+1)

indente(a)
print("---------------")
indente(arbre1)
print("---------------")
indente(arbre2)
print("---------------")
indente(arbre3)

A
.B
..C
...-
...-
..D
...-
...-
.-

A
.-
.B
..C
...-
...-
..D

9

Correction exos algos arbres ‑ p1

...-

...-

A
.-
.B
..-
..C
...-
...D
....-
....-

A
.B
..C
...-
...-
..D
...-
...-
.E
..F
...-
...-
..G
...-
...-

3.5 Exercice 5

• Ecrire une fonction parfait(h:int) qui prend en argument un nombre entier h supérieur
ou égal à zéro et qui renvoie un arbre binaire parfait de hauteur h

• Ecrire une fonction peigne_gauche(h:int) qui prend en argument un nombre entier h
supérieur ou égal à zéro et qui renvoie un peigne gauche (tous les sous‑arbres droits sont vides)
de hauteur h

• Ecrireune fonctionest_peigne_gauche(arbre)qui renvoieTrue siarbreestunpeigne

10

Correction exos algos arbres ‑ p1

gauche.

Un arbre parfait a une racine, et chacun de ses sous arbres gauches et
droites est aussi un sous-arbre↪

parfait de hauteur h-1 => définition et implémentation récursives
def parfait(h):

if h==0:
return None

return Node(parfait(h-1), h, parfait(h-1))
affiche(parfait(3))
print()
affiche(parfait(5))

(((1)2(1))3((1)2(1)))
(((((1)2(1))3((1)2(1)))4(((1)2(1))3((1)2(1))))5((((1)2(1))3((1)2(1)))4(((1)2(1))3((1)2(1)))))

Un peigne gauche a une racine, son sous arbre droit est vide, et son sous
arbre gauche est aussi↪

un peigne gauche de hauteur h-1 => définition et implémentation récursives
def peigne_gauche(h):

if h == 0:
return None

return Node(peigne_gauche(h-1), h, None)

affiche(peigne_gauche(5))

(((((1)2)3)4)5)

Un arbre est un peigne gauche si pour chaque noeud, son sous-arbre droit
est vide et son↪

sous-arbre gauche est aussi un peigne gauche => définition et
implémentation récursive↪

Cas de base : un arbre vide est un peigne_gauche
def est_peigne_gauche(arbre):

if arbre is None:
return True

return (est_peigne_gauche(arbre.left)) and (arbre.right is None)

print(est_peigne_gauche(arbre1))
print(est_peigne_gauche(arbre2))
print(est_peigne_gauche(arbre3))
print(est_peigne_gauche(peigne_gauche(3)))

11

Correction exos algos arbres ‑ p1

False
False
False
True

3.6 Exercice 6

Déterminerquel typedeparcours est effecturé si dans la fonctionparcours_largeuron remplace
la file (FIFO) par une pile (LIFO).

Quel avantage peut‑il y avoir par rapport aux méthodes de parcours récursifs ?

class Pile:
def __init__(self):

self.pile = list()
def enpile(self, valeur):

self.pile.append(valeur)
def depile(self):

assert len(self.pile) > 0, "La pile est vide"
return self.pile.pop()

def nbelts(self):
return len(self.pile)

def parcours_avec_pile(arbre):
p = Pile()
p.enpile(arbre)
while p.nbelts() > 0:

cur = p.depile()
print(cur.value, end=" ")
if cur.left is not None:

p.enpile(cur.left)
if cur.right is not None:

p.enpile(cur.right)
print()

parcours_avec_pile(arbre1)
parcours_avec_pile(arbre2)
parcours_avec_pile(arbre3)

A B D C

12

Correction exos algos arbres ‑ p1

A B C D
A E G F B D C

C'est un parcours enprofondeur. Avantage : la profondeur des arbres qu'on peut traiter n'est pas lim‑
itée par la limite de la taille de la pile d'appel (recursion error), on peut faire des arbres de profondeur
> 1000 ou 2000 sans pb.

13

	Algos arbre binaires
	Arbres exemples

	Algos sur les arbres
	Calcul de la taille
	Calcul de la hauteur
	Parcours préfixes, infixes, postfixes
	Parcours en largeur

	Exercices
	Exercice 1
	Exercice 2
	Exercice 3
	Exercice 4
	Exercice 5
	Exercice 6

