Correction exos algos arbres - p1

1 Algos arbre binaires

class Node:
def __init__(self, left, value, right):
self.value = value
self.left = left
self.right = right

a = Node(Node(Node(None,'"C",None),
IIBH s
Node (None,'"D",None) ),
IIAII s
None)

Node (
Node (

Node (
None,
nen
None) ,

ng

Node (
None,
npn
None)),

Q
I

llAll 5
None)




Correction exos algos arbres - p1

1.1 Arbres exemples
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)
)
arbre3 =\
Node (
Node (
Node(None, "C'", None),
ngn
Node(None, "D'", None)
)
U
Node (
Node (None, "F'", None),
N
Node (None, "G", None)
)
)

2 Algos sur les arbres

2.1 Calculde la taille

# Algo et application aux exemples
def taille(arbre):
if arbre is None:
return 0
return l+taille(arbre.left)+taille(arbre.right)

print("Taille arbre 1 : ", taille(arbrel))
print("Taille arbre 2 : ", taille(arbre2))
print("Taille arbre 3 : ", taille(arbre3))
Taille arbre 1 4
Taille arbre 2 4
Taille arbre 3 7

2.2 Calcul de la hauteur

# Algo et application aux exemples
def hauteur(arbre):
if arbre 1is None:
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return 0O
return 1 + max(hauteur(arbre.left), hauteur(arbre.right))

print("Hauteur arbre 1", hauteur(arbrel))
print("Hauteur arbre 2", hauteur(arbre2))
print("Hauteur arbre 3", hauteur(arbre3))

Hauteur arbre 1 3
Hauteur arbre 2 4
Hauteur arbre 3 3

2.3 Parcours préfixes, infixes, postfixes

# Préfixe
def prefixe(arbre):
if arbre is None:
return
print(arbre.value, end=" ")
prefixe(arbre.left)
prefixe(arbre.right)

prefixe(arbrel); print()
prefixe(arbre2); print()
prefixe(arbre3); print()

ABCD
ABCD
ABCDETFG

# Infixe
def infixe(arbre):
if arbre 1is None:

return
infixe(arbre.left)
print(arbre.value, end=" ")

infixe(arbre.right)

infixe(arbrel); print()
infixe(arbre2); print()
infixe(arbre3); print()
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ACBD
ABCD
CBDAFEG

# Post
def postfixe(arbre):
if arbre 1is None:
return
postfixe(arbre.left)
postfixe(arbre.right)
print(arbre.value, end=" ")

postfixe(arbrel); print()
postfixe(arbre2); print()
postfixe(arbre3); print()

CDBA
DCBA
CDBFGEA

2.4 Parcours en largeur

class File:

def __1init__(self):
self.file = list()

def enfile(self, valeur):
self.file.append(valeur)

def defile(self):
assert len(self.file) > 0, "La file est vide"
return self.file.pop(0)

def nbelts(self):
return len(self.file)

# Algo et application aux exemples

# VARIANTE 1 : on met les noeuds vides dans la file
def parcours_largeur(arbre):
f = File()
f.enfile(arbre)
while f.nbelts() > 0:
cur = f.defile()
if cur 1is None:
continue
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print(cur.value, end=" ")
f.enfile(cur.left)
f.enfile(cur.right)
print()
parcours_largeur (arbrel)
parcours_largeur (arbre2)
parcours_largeur (arbre3)

ABCD
ABCD
ABECDTFG

# VARIANTE : on ne met pas les noeuds vides dans la file
def parcours_largeur(arbre):
f = File()
f.enfile(arbre)
while f.nbelts() > 0:
cur = f.defile()
print(cur.value, end=" ")
if cur.left is not None:
f.enfile(cur.left)
if cur.right is not None:
f.enfile(cur.right)
print()
parcours_largeur (arbrel)
parcours_largeur (arbre2)
parcours_largeur (arbre3)

ABCD

ABCD
ABECDTFG

3 Exercices

3.1 Exercicel

Ecrire une fonction affiche (arbre) quiimprime un arbre sous la forme suivante
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« sil'arbre estvide, on n'imprime rien
« pour un noeud, on imprime successivement

- une parenthese ouvrante

- son sous-arbre gauche (récursivement)
- savaleur

- son sous-arbre droit (récursivement)

- une parenthese fermante

Par exemple, l'arbre a du début doit afficher (((C)B(D))A)

def affiche(arbre):

if arbre is None:
print("", end="")
return

print(" (", end="")

affiche(arbre.left)

print(arbre.value, end="")

affiche(arbre.right)

print(")", end="")

affiche(a); print()

affiche(arbrel); print()
affiche(arbre2); print()
affiche(arbre3); print()

(((C)B(D))A)
(AC(C)B(D)))
(A(B(C(D))))
(((C)B(D))A((F)E(G)))

3.2 Exercice2

Dessiner l'arbre binaire pour lequel le programme précédent produit la sortie (A((B)C)). De
maniere générale, expliquer comment retrouver la forme de ['arbre dont ['affichage est donné.
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/\

On navigue en profondeur dans les parentheses, en partant de la racine (une seule parenthese) et en
dessinant au fur et a mesure ce qu'ily a a gauche et a droite, récursivement.

3.3 Exercice3

Donner 4 arbres de taille 3, tous différents, pour lesquels le parcours infixe affiche 123.

On peut dessiner la forme des arbres en premier :

3.4 Exercice 4
Ecrire une fonction indente qui affiche un arbre de maniére indentée, en affichant un tiret pour les
sous-arbres vides.

Exemple de sortie du programme pour l'arbre de la figure \label{fig:pyreprl} (chaque point -
représente un espace)
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# Il faut faire *x*DESCENDRE*xx 1'information de profondeur aux enfants =>
< argument
def indente(arbre, prof=0):
if arbre 1is None:
print("."xprof+"-")
return
print("."xprof+arbre.value)
indente(arbre.left, prof+l)
indente(arbre.right, prof+l)

indente(a)

pr‘int(" ——————————————— u)
indente(arbre2)
pr‘int(" ——————————————— "

indente(arbre3)
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3.5 Exercice5

« Ecrire une fonction parfait(h:int) quiprend en argument un nombre entier h supérieur
ou égal a zéro et qui renvoie un arbre binaire parfait de hauteur h

« Ecrire une fonction peigne_gauche(h:int) qui prend en argument un nombre entier h
supérieur ou égal a zéro et qui renvoie un peigne gauche (tous les sous-arbres droits sont vides)
de hauteur h

« Ecrireunefonctionest_peigne_gauche(arbre) quirenvoieTruesiarbreestun peigne

10
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gauche.

# Un arbre parfait a une racine, et chacun de ses sous arbres gauches et
» droites est aussi un sous-arbre
# parfait de hauteur h-1 => définition et implémentation récursives
def parfait(h):

if h==0:

return None

return Node(parfait(h-1), h, parfait(h-1))
affiche(parfait(3))
print()
affiche(parfait(5))

(((1)2(1))3((1)2(1)))
(CC((1)2(1))3((1)2(1)))4(((1)2(1))3((1)2(1))))5((((1)2(1))3((1)2(1)))4(((1)2(1))

# Un peigne gauche a une racine, son sous arbre droit est vide, et son sous
~ arbre gauche est aussti
# un peigne gauche de hauteur h-1 => définition et implémentation récursives
def peigne_gauche(h):
if h ==
return None
return Node(peigne_gauche(h-1), h, None )

affiche(peigne_gauche(5))

(((((1)2)3)4)5)

# Un arbre est un peigne gauche si pour chaque noeud, son sous-arbre droit
» est vide et son
# sous-arbre gauche est aussi un peigne gauche => définition et
o implémentation récursive
# Cas de base : un arbre vide est un peigne_gauche
def est_peigne_gauche(arbre):

if arbre 1is None:

return True
return (est_peigne_gauche(arbre.left)) and (arbre.right is None)

print(est_peigne_gauche(arbrel))
print(est_peigne_gauche(arbre2))
print(est_peigne_gauche(arbre3))
print(est_peigne_gauche(peigne_gauche(3)))

11
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False
False
False
True

3.6 Exercice6

Déterminer quel type de parcours est effecturé sidans la fonction parcours_largeur onremplace
la file (FIFO) par une pile (LIFO).

Quel avantage peut-il y avoir par rapport aux méthodes de parcours récursifs ?

class Pile:

def __1init__(self):
self.pile = list()

def enpile(self, valeur):
self.pile.append(valeur)

def depile(self):
assert len(self.pile) > 0, "La pile est vide"
return self.pile.pop()

def nbelts(self):
return len(self.pile)

def parcours_avec_pile(arbre):
p = Pile()
p.enpile(arbre)
while p.nbelts() > 0:
cur = p.depile()
print(cur.value, end=" ")
if cur.left is not None:
p.enpile(cur.left)
if cur.right is not None:
p.enpile(cur.right)
print()

parcours_avec_pile(arbrel)

parcours_avec_pile(arbre2)
parcours_avec_pile(arbre3)

ABDC

12
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ABCD
AEGFBDC

C'est un parcours en profondeur. Avantage: la profondeur des arbres qu'on peut traiter n'est pas lim-
itée par la limite de la taille de la pile d'appel (recursion error), on peut faire des arbres de profondeur
> 1000 ou 2000 sans pb.

13
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