
Correction exos algos arbres ‑ p1

1 Algos arbre binaires

class Node:
def __init__(self, left, value, right):

self.value = value
self.left = left
self.right = right

a = Node(Node(Node(None,"C",None),
"B",
Node(None,"D",None)),

"A",
None)

a = Node(
Node(

Node(
None,
"C",
None),

"B",
Node(

None,
"D",
None)),

"A",
None)
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1.1 Arbres exemples

arbre1 = Node(
None,
"A",
Node(

Node(None, "C", None),
"B",
Node(None, "D", None)

)
)

arbre2 = \
Node(

None,
"A",
Node(

None,
"B",
Node(

None,
"C",
Node(

None,
"D",
None
)

)
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)
)

arbre3 = \
Node(

Node(
Node(None, "C", None),
"B",
Node(None, "D", None)

),
"A",
Node(

Node(None, "F", None),
"E",
Node(None, "G", None)

)
)

2 Algos sur les arbres

2.1 Calcul de la taille

# Algo et application aux exemples
def taille(arbre):

if arbre is None:
return 0

return 1+taille(arbre.left)+taille(arbre.right)

print("Taille arbre 1 : ", taille(arbre1))
print("Taille arbre 2 : ", taille(arbre2))
print("Taille arbre 3 : ", taille(arbre3))

Taille arbre 1 : 4
Taille arbre 2 : 4
Taille arbre 3 : 7

2.2 Calcul de la hauteur

# Algo et application aux exemples
def hauteur(arbre):

if arbre is None:
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return 0
return 1 + max(hauteur(arbre.left), hauteur(arbre.right))

print("Hauteur arbre 1", hauteur(arbre1))
print("Hauteur arbre 2", hauteur(arbre2))
print("Hauteur arbre 3", hauteur(arbre3))

Hauteur arbre 1 3
Hauteur arbre 2 4
Hauteur arbre 3 3

2.3 Parcours préfixes, infixes, postfixes

# Préfixe
def prefixe(arbre):

if arbre is None:
return

print(arbre.value, end=" ")
prefixe(arbre.left)
prefixe(arbre.right)

prefixe(arbre1); print()
prefixe(arbre2); print()
prefixe(arbre3); print()

A B C D
A B C D
A B C D E F G

# Infixe
def infixe(arbre):

if arbre is None:
return

infixe(arbre.left)
print(arbre.value, end=" ")
infixe(arbre.right)

infixe(arbre1); print()
infixe(arbre2); print()
infixe(arbre3); print()
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A C B D
A B C D
C B D A F E G

# Post
def postfixe(arbre):

if arbre is None:
return

postfixe(arbre.left)
postfixe(arbre.right)
print(arbre.value, end=" ")

postfixe(arbre1); print()
postfixe(arbre2); print()
postfixe(arbre3); print()

C D B A
D C B A
C D B F G E A

2.4 Parcours en largeur

class File:
def __init__(self):

self.file = list()
def enfile(self, valeur):

self.file.append(valeur)
def defile(self):

assert len(self.file) > 0, "La file est vide"
return self.file.pop(0)

def nbelts(self):
return len(self.file)

# Algo et application aux exemples

# VARIANTE 1 : on met les noeuds vides dans la file
def parcours_largeur(arbre):

f = File()
f.enfile(arbre)
while f.nbelts() > 0:

cur = f.defile()
if cur is None:

continue
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print(cur.value, end=" ")
f.enfile(cur.left)
f.enfile(cur.right)

print()
parcours_largeur(arbre1)
parcours_largeur(arbre2)
parcours_largeur(arbre3)

A B C D
A B C D
A B E C D F G

# VARIANTE : on ne met pas les noeuds vides dans la file
def parcours_largeur(arbre):

f = File()
f.enfile(arbre)
while f.nbelts() > 0:

cur = f.defile()
print(cur.value, end=" ")
if cur.left is not None:

f.enfile(cur.left)
if cur.right is not None:

f.enfile(cur.right)
print()

parcours_largeur(arbre1)
parcours_largeur(arbre2)
parcours_largeur(arbre3)

A B C D
A B C D
A B E C D F G

3 Exercices

3.1 Exercice 1

Ecrire une fonction affiche(arbre) qui imprime un arbre sous la forme suivante

:
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• si l'arbre est vide, on n'imprime rien
• pour un noeud, on imprime successivement

– une parenthèse ouvrante
– son sous‑arbre gauche (récursivement)
– sa valeur
– son sous‑arbre droit (récursivement)
– une parenthèse fermante

Par exemple, l'arbre a du début doit afficher (((C)B(D))A)

def affiche(arbre):
if arbre is None:

print("", end="")
return

print("(", end="")
affiche(arbre.left)
print(arbre.value, end="")
affiche(arbre.right)
print(")", end="")

affiche(a); print()
affiche(arbre1); print()
affiche(arbre2); print()
affiche(arbre3); print()

(((C)B(D))A)
(A((C)B(D)))
(A(B(C(D))))
(((C)B(D))A((F)E(G)))

3.2 Exercice 2

Dessiner l'arbre binaire pour lequel le programme précédent produit la sortie (A((B)C)). De
manière générale, expliquer comment retrouver la forme de l'arbre dont l'affichage est donné.

A
/ \
C
/ \

B
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/ \

On navigue en profondeur dans les parenthèses, en partant de la racine (une seule parenthèse) et en
dessinant au fur et à mesure ce qu'il y a à gauche et à droite, récursivement.

3.3 Exercice 3

Donner 4 arbres de taille 3, tous différents, pour lesquels le parcours infixe affiche 123.

On peut dessiner la forme des arbres en premier :

x x x x x
/ \ / / \ \
x x x x x x

/ \ \ /
x x x x

et ensuite les ”remplir” avec les valeurs dans l'ordre qu'il faut pour que ça donne 123 en infixe :

2 3 3 1 1
/ \ / / \ \
1 3 2 1 2 3

/ \ \ /
1 2 3 2

3.4 Exercice 4

Ecrire une fonction indente qui affiche un arbre demanière indentée, en affichant un tiret pour les
sous‑arbres vides.

Exemple de sortie du programme pour l'arbre de la figure \label{fig:pyrepr1} (chaque point ·
représente un espace)

A
·B
··C
···-
···-
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··D
···-
···-
·-

# Il faut faire **DESCENDRE** l'information de profondeur aux enfants =>
argument↪

def indente(arbre, prof=0):
if arbre is None:

print("."*prof+"-")
return

print("."*prof+arbre.value)
indente(arbre.left, prof+1)
indente(arbre.right, prof+1)

indente(a)
print("---------------")
indente(arbre1)
print("---------------")
indente(arbre2)
print("---------------")
indente(arbre3)

A
.B
..C
...-
...-
..D
...-
...-
.-
---------------
A
.-
.B
..C
...-
...-
..D
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...-

...-
---------------
A
.-
.B
..-
..C
...-
...D
....-
....-
---------------
A
.B
..C
...-
...-
..D
...-
...-
.E
..F
...-
...-
..G
...-
...-

3.5 Exercice 5

• Ecrire une fonction parfait(h:int) qui prend en argument un nombre entier h supérieur
ou égal à zéro et qui renvoie un arbre binaire parfait de hauteur h

• Ecrire une fonction peigne_gauche(h:int) qui prend en argument un nombre entier h
supérieur ou égal à zéro et qui renvoie un peigne gauche (tous les sous‑arbres droits sont vides)
de hauteur h

• Ecrireune fonctionest_peigne_gauche(arbre)qui renvoieTrue siarbreestunpeigne
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gauche.

# Un arbre parfait a une racine, et chacun de ses sous arbres gauches et
droites est aussi un sous-arbre↪

# parfait de hauteur h-1 => définition et implémentation récursives
def parfait(h):

if h==0:
return None

return Node(parfait(h-1), h, parfait(h-1))
affiche(parfait(3))
print()
affiche(parfait(5))

(((1)2(1))3((1)2(1)))
(((((1)2(1))3((1)2(1)))4(((1)2(1))3((1)2(1))))5((((1)2(1))3((1)2(1)))4(((1)2(1))3((1)2(1)))))

# Un peigne gauche a une racine, son sous arbre droit est vide, et son sous
arbre gauche est aussi↪

# un peigne gauche de hauteur h-1 => définition et implémentation récursives
def peigne_gauche(h):

if h == 0:
return None

return Node(peigne_gauche(h-1), h, None )

affiche(peigne_gauche(5))

(((((1)2)3)4)5)

# Un arbre est un peigne gauche si pour chaque noeud, son sous-arbre droit
est vide et son↪

# sous-arbre gauche est aussi un peigne gauche => définition et
implémentation récursive↪

# Cas de base : un arbre vide est un peigne_gauche
def est_peigne_gauche(arbre):

if arbre is None:
return True

return (est_peigne_gauche(arbre.left)) and (arbre.right is None)

print(est_peigne_gauche(arbre1))
print(est_peigne_gauche(arbre2))
print(est_peigne_gauche(arbre3))
print(est_peigne_gauche(peigne_gauche(3)))
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False
False
False
True

3.6 Exercice 6

Déterminerquel typedeparcours est effecturé si dans la fonctionparcours_largeuron remplace
la file (FIFO) par une pile (LIFO).

Quel avantage peut‑il y avoir par rapport aux méthodes de parcours récursifs ?

class Pile:
def __init__(self):

self.pile = list()
def enpile(self, valeur):

self.pile.append(valeur)
def depile(self):

assert len(self.pile) > 0, "La pile est vide"
return self.pile.pop()

def nbelts(self):
return len(self.pile)

def parcours_avec_pile(arbre):
p = Pile()
p.enpile(arbre)
while p.nbelts() > 0:

cur = p.depile()
print(cur.value, end=" ")
if cur.left is not None:

p.enpile(cur.left)
if cur.right is not None:

p.enpile(cur.right)
print()

parcours_avec_pile(arbre1)
parcours_avec_pile(arbre2)
parcours_avec_pile(arbre3)

A B D C
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A B C D
A E G F B D C

C'est un parcours enprofondeur. Avantage : la profondeur des arbres qu'on peut traiter n'est pas lim‑
itée par la limite de la taille de la pile d'appel (recursion error), on peut faire des arbres de profondeur
> 1000 ou 2000 sans pb.
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