Correction exos algos arbres - p1

1 Algos arbre binaires

class Node:
def __init__(self, left, value, right):
self.value = value
self.left = left
self.right = right

a = Node(Node(Node(None,'"C",None),
IIBH s
Node (None,'"D",None)),
IIAII s
None)

Node (
Node (

Node (
None,
nen
None) ,

ng

Node (
None,
npn
None)),

Q
I

llAll 5
None)

Correction exos algos arbres - p1

1.1 Arbres exemples

(&) (&) (23

(2) (2 (e

© © @ © 0 0 6
O

arbrel = Node(
None,
AT
Node (
Node(None, "C'", None),
IIBH s
Node(None, "D'", None)

)

arbre2 =\
Node (
None,
llAll 5
Node (
None,
IIBH s
Node (
None,
IICH s
Node (
None,
IIDII 5
None

)

Correction exos algos arbres - p1

)
)
arbre3 =\
Node (
Node (
Node(None, "C'", None),
ngn
Node(None, "D'", None)
)
U
Node (
Node (None, "F'", None),
N
Node (None, "G", None)
)
)

2 Algos sur les arbres

2.1 Calculde la taille

Algo et application aux exemples
def taille(arbre):
if arbre is None:
return 0
return l+taille(arbre.left)+taille(arbre.right)

print("Taille arbre 1 : ", taille(arbrel))
print("Taille arbre 2 : ", taille(arbre2))
print("Taille arbre 3 : ", taille(arbre3))
Taille arbre 1 4
Taille arbre 2 4
Taille arbre 3 7

2.2 Calcul de la hauteur

Algo et application aux exemples
def hauteur(arbre):
if arbre 1is None:

Correction exos algos arbres - p1

return 0O
return 1 + max(hauteur(arbre.left), hauteur(arbre.right))

print("Hauteur arbre 1", hauteur(arbrel))
print("Hauteur arbre 2", hauteur(arbre2))
print("Hauteur arbre 3", hauteur(arbre3))

Hauteur arbre 1 3
Hauteur arbre 2 4
Hauteur arbre 3 3

2.3 Parcours préfixes, infixes, postfixes

Préfixe
def prefixe(arbre):
if arbre is None:
return
print(arbre.value, end=" ")
prefixe(arbre.left)
prefixe(arbre.right)

prefixe(arbrel); print()
prefixe(arbre2); print()
prefixe(arbre3); print()

ABCD
ABCD
ABCDETFG

Infixe
def infixe(arbre):
if arbre 1is None:

return
infixe(arbre.left)
print(arbre.value, end=" ")

infixe(arbre.right)

infixe(arbrel); print()
infixe(arbre2); print()
infixe(arbre3); print()

Correction exos algos arbres - p1

ACBD
ABCD
CBDAFEG

Post
def postfixe(arbre):
if arbre 1is None:
return
postfixe(arbre.left)
postfixe(arbre.right)
print(arbre.value, end=" ")

postfixe(arbrel); print()
postfixe(arbre2); print()
postfixe(arbre3); print()

CDBA
DCBA
CDBFGEA

2.4 Parcours en largeur

class File:

def __1init__(self):
self.file = list()

def enfile(self, valeur):
self.file.append(valeur)

def defile(self):
assert len(self.file) > 0, "La file est vide"
return self.file.pop(0)

def nbelts(self):
return len(self.file)

Algo et application aux exemples

VARIANTE 1 : on met les noeuds vides dans la file
def parcours_largeur(arbre):
f = File()
f.enfile(arbre)
while f.nbelts() > 0:
cur = f.defile()
if cur 1is None:
continue

Correction exos algos arbres - p1

print(cur.value, end=" ")
f.enfile(cur.left)
f.enfile(cur.right)
print()
parcours_largeur (arbrel)
parcours_largeur (arbre2)
parcours_largeur (arbre3)

ABCD
ABCD
ABECDTFG

VARIANTE : on ne met pas les noeuds vides dans la file
def parcours_largeur(arbre):
f = File()
f.enfile(arbre)
while f.nbelts() > 0:
cur = f.defile()
print(cur.value, end=" ")
if cur.left is not None:
f.enfile(cur.left)
if cur.right is not None:
f.enfile(cur.right)
print()
parcours_largeur (arbrel)
parcours_largeur (arbre2)
parcours_largeur (arbre3)

ABCD

ABCD
ABECDTFG

3 Exercices

3.1 Exercicel

Ecrire une fonction affiche (arbre) quiimprime un arbre sous la forme suivante

Correction exos algos arbres - p1

« sil'arbre estvide, on n'imprime rien
« pour un noeud, on imprime successivement

- une parenthese ouvrante

- son sous-arbre gauche (récursivement)
- savaleur

- son sous-arbre droit (récursivement)

- une parenthese fermante

Par exemple, l'arbre a du début doit afficher (((C)B(D))A)

def affiche(arbre):

if arbre is None:
print("", end="")
return

print(" (", end="")

affiche(arbre.left)

print(arbre.value, end="")

affiche(arbre.right)

print(")", end="")

affiche(a); print()

affiche(arbrel); print()
affiche(arbre2); print()
affiche(arbre3); print()

(((C)B(D))A)
(AC(C)B(D)))
(A(B(C(D))))
(((C)B(D))A((F)E(G)))

3.2 Exercice2

Dessiner l'arbre binaire pour lequel le programme précédent produit la sortie (A((B)C)). De
maniere générale, expliquer comment retrouver la forme de ['arbre dont ['affichage est donné.

Correction exos algos arbres - p1

/\

On navigue en profondeur dans les parentheses, en partant de la racine (une seule parenthese) et en
dessinant au fur et a mesure ce qu'ily a a gauche et a droite, récursivement.

3.3 Exercice3

Donner 4 arbres de taille 3, tous différents, pour lesquels le parcours infixe affiche 123.

On peut dessiner la forme des arbres en premier :

3.4 Exercice 4
Ecrire une fonction indente qui affiche un arbre de maniére indentée, en affichant un tiret pour les
sous-arbres vides.

Exemple de sortie du programme pour l'arbre de la figure \label{fig:pyreprl} (chaque point -
représente un espace)

Correction exos algos arbres - p1

Il faut faire *x*DESCENDRE*xx 1'information de profondeur aux enfants =>
< argument
def indente(arbre, prof=0):
if arbre 1is None:
print("."xprof+"-")
return
print("."xprof+arbre.value)
indente(arbre.left, prof+l)
indente(arbre.right, prof+l)

indente(a)

pr‘int(" ——————————————— u)
indente(arbre2)
pr‘int(" ——————————————— "

indente(arbre3)

Correction exos algos arbres - p1

3.5 Exercice5

« Ecrire une fonction parfait(h:int) quiprend en argument un nombre entier h supérieur
ou égal a zéro et qui renvoie un arbre binaire parfait de hauteur h

« Ecrire une fonction peigne_gauche(h:int) qui prend en argument un nombre entier h
supérieur ou égal a zéro et qui renvoie un peigne gauche (tous les sous-arbres droits sont vides)
de hauteur h

« Ecrireunefonctionest_peigne_gauche(arbre) quirenvoieTruesiarbreestun peigne

10

Correction exos algos arbres - p1

gauche.

Un arbre parfait a une racine, et chacun de ses sous arbres gauches et
» droites est aussi un sous-arbre
parfait de hauteur h-1 => définition et implémentation récursives
def parfait(h):

if h==0:

return None

return Node(parfait(h-1), h, parfait(h-1))
affiche(parfait(3))
print()
affiche(parfait(5))

(((1)2(1))3((1)2(1)))
(CC((1)2(1))3((1)2(1)))4(((1)2(1))3((1)2(1))))5((((1)2(1))3((1)2(1)))4(((1)2(1))

Un peigne gauche a une racine, son sous arbre droit est vide, et son sous
~ arbre gauche est aussti
un peigne gauche de hauteur h-1 => définition et implémentation récursives
def peigne_gauche(h):
if h ==
return None
return Node(peigne_gauche(h-1), h, None)

affiche(peigne_gauche(5))

(((((1)2)3)4)5)

Un arbre est un peigne gauche si pour chaque noeud, son sous-arbre droit
» est vide et son
sous-arbre gauche est aussi un peigne gauche => définition et
o implémentation récursive
Cas de base : un arbre vide est un peigne_gauche
def est_peigne_gauche(arbre):

if arbre 1is None:

return True
return (est_peigne_gauche(arbre.left)) and (arbre.right is None)

print(est_peigne_gauche(arbrel))
print(est_peigne_gauche(arbre2))
print(est_peigne_gauche(arbre3))
print(est_peigne_gauche(peigne_gauche(3)))

11

Correction exos algos arbres - p1

False
False
False
True

3.6 Exercice6

Déterminer quel type de parcours est effecturé sidans la fonction parcours_largeur onremplace
la file (FIFO) par une pile (LIFO).

Quel avantage peut-il y avoir par rapport aux méthodes de parcours récursifs ?

class Pile:

def __1init__(self):
self.pile = list()

def enpile(self, valeur):
self.pile.append(valeur)

def depile(self):
assert len(self.pile) > 0, "La pile est vide"
return self.pile.pop()

def nbelts(self):
return len(self.pile)

def parcours_avec_pile(arbre):
p = Pile()
p.enpile(arbre)
while p.nbelts() > 0:
cur = p.depile()
print(cur.value, end=" ")
if cur.left is not None:
p.enpile(cur.left)
if cur.right is not None:
p.enpile(cur.right)
print()

parcours_avec_pile(arbrel)

parcours_avec_pile(arbre2)
parcours_avec_pile(arbre3)

ABDC

12

Correction exos algos arbres - p1

ABCD
AEGFBDC

C'est un parcours en profondeur. Avantage: la profondeur des arbres qu'on peut traiter n'est pas lim-
itée par la limite de la taille de la pile d'appel (recursion error), on peut faire des arbres de profondeur
> 1000 ou 2000 sans pb.

13

	Algos arbre binaires
	Arbres exemples

	Algos sur les arbres
	Calcul de la taille
	Calcul de la hauteur
	Parcours préfixes, infixes, postfixes
	Parcours en largeur

	Exercices
	Exercice 1
	Exercice 2
	Exercice 3
	Exercice 4
	Exercice 5
	Exercice 6

